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A key factor in septic patient’s deaths is cardiac dysfunction brought on by sepsis. The molecular causes 
of septic cardiomyopathy and effective preventative treatments, however, remain unknown. Resveratrol is a 
naturally occurring antitoxin with several biological effects, including anticancer, a protective impact on the 
cardiovascular system, antiapoptotic, antioxidant, anti-free radical, antibacterial, antiviral, anti-inflammatory, 
and immunomodulatory. Whether resveratrol mediates bioactive resistance in septic myocardial damage 
is unknown, though. The c-Jun NH2-terminal kinase/Bcl-2-associated X protein/cytochrome C signaling 
pathway is involved in mitochondrial apoptosis. Activated c-Jun NH2-terminal kinase, or phospho-c-Jun NH2-
terminal kinase, causes Bcl-2-associated X protein to move to the outer mitochondrial membrane, increasing 
its permeability, and later releases cytochrome C into the cytoplasm, initiating apoptosis. To decrease 
cardiac damage in sepsis, it was determined in this study if resveratrol mediates the apoptotic process of 
cardiomyocytes via the c-Jun NH2-terminal kinases/Bcl-2-associated X protein/cytochrome C signaling 
pathway. Rats with sepsis underwent cecum ligation puncture to cause myocardial damage, which was then 
treated with resveratrol. The outcomes demonstrated that resveratrol substantially reduced myocardial 
apoptosis, slowed reactive oxygen species generation, and ameliorated sepsis-induced cardiac dysfunction. The 
c-Jun NH2-terminal kinases/Bcl-2-associated X protein/cytochrome C pathway was shown to be much more 
agonistic in the H9c2 rat cardiomyocyte sepsis model than in the control group, although this was significantly 
decreased following treatment with resveratrol. We further demonstrated whether resveratrol mediates the 
c-Jun NH2-terminal kinase/Bcl-2-associated X protein/cytochrome C pathway by agonizing the c-Jun NH2-
terminal kinase signaling pathway in vitro with a c-Jun NH2-terminal kinase-activator to increase sepsis-
induced cardiac injury, while using resveratrol to verify its protective effect on myocardial injury in sepsis. 
All things considered, it has been established that resveratrol lessens myocardial cell death by controlling the 
c-Jun NH2-terminal kinase/Bcl-2-associated X protein/cytochrome C signaling pathway, thereby reducing the 
myocardial harm brought on by sepsis.

Key words: Resveratrol, in vitro, apoptosis, myocardial injury, immunomodulatory, sepsis

Sepsis can result in life-threatening organ failure 
and is brought on by an imbalance in the body’s 
reaction to infection[1]. The systolic and/or diastolic 
dysfunction of the heart caused by sepsis is known 
as Sepsis-Induced Myocardial Dysfunction (SIMD), 
also referred to as Sepsis-Induced Cardiomyopathy 
(SIC), and it is characterized by an early onset and 
high incidence. It significantly raises the mortality 
rate of sepsis patients[2]. Apoptosis, an inflammatory 
response, and oxidative stress are all significant 

causes of SIC, although the exact mechanisms 
underlying these phenomena are complex and yet 
poorly understood[3].
The normal organism undergoes apoptosis, which is 
a genetically scheduled death. The intrinsic pathway, 
often known as the mitochondrial pathway, is one of 
several apoptotic processes. The B-cell lymphoma-2 
(Bcl-2) protein family’s members regulate 
mitochondrial apoptosis, which begins with the 
depolarization of the mitochondria. Cytochrome-C 
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(Cyt-C) is a protein that mitochondria release into 
the cytoplasmic matrix after releasing apoptotic 
signals. Cyt-C mixes with other compounds to form 
the apoptosome, which activates caspase-3 and starts 
apoptosis[4]. A key node in the control of apoptosis is 
the JNK signaling pathway, is crucial to the process 
of apoptosis[5]. c-Jun NH2-Terminal Kinase (JNK) 
also plays a regulatory role in modulating oxidative 
stress, among other things.
With anti-apoptotic, antioxidant, anti-inflammatory, 
and anti-cancer properties, resveratrol is a 
polyphenolic plant antitoxin that is commonly found 
in berries, peanuts, and wine[6]. An in-depth analysis 
of its protective effect on septic cardiomyopathy 
and comprehension of its mechanism of action 
can give a theoretical basis for the prevention and 
treatment of septic cardiomyopathy due to the safer 
and less residual features of the plant’s functional 
components.
In the current investigation, we used CLP to induce a 
rat model of SIC, and lipopolysaccharide to induce a 
septic cell model by acting on H9c2 cardiomyocytes. 
This study’s objective was to observe how resveratrol 
protects against septic myocardial injury and to learn 
more about how it has anti-apoptotic effects.

MATERIALS AND METHODS
Materials and reagents:

The following is how these experimental reagents 
were utilized in this investigation, resveratrol 
(501-36-0, Beyotime, China); Lipopolysaccharide 
(LPS; L2880-10 mg, Biotopped, China); Terminal 
Deoxynucleotidyl Transferase dUTP Nick end 
Labeling (TUNEL) assay kit (1215692910, Roche, 
China); Cell Counting Kit-8 (CCK-8) (CK04, Dojindo, 
Japan); Interleukin (IL)-6 (CK-E30219), IL-10 (CK-
E30194), Tumor Necrosis Factor Alpha (TNF-α) 
(CK-E31063); Enzyme-Linked Immunosorbent 
Assay (ELISA) kits (ELISA, Shanghai Yuchun 
Biotechnology, China); Malondialdehyde assay kit 
(MDA, BC0025), Glutathione Peroxidase Assay kit 
(GPX, BC1195) and Superoxide Dismutase (SOD 
assay kit, BC0175) (Beijing Solarbio Science & 
Technology Co., Ltd., China); Reactive Oxygen 
Species (ROS) assay kit (C1300-1, Applygen, China); 
primary antibodies JNK (bs-2592R), p-JNK (bsm-
52452R), Bcl-2–associated X protein (BAX) (bs-
0127R), Bcl-2 (bs-4563R), caspase 3 (bsm-52289R) 
(Bioss, China), cleaved caspase-3 (WL01992), Cyt-C 
(WL02410) (Wanleibio, China) and JNK-activator 
(Anisomycin) (SC1032, Beyotime, China).

Animals and modeling:

The National Institutes of Health’s 1996 ethical 
guidelines for the use of laboratory animals were 
followed by the research, which received clearance 
from the Animal Protection and Use Committee of 
Shihezi University (Shihezi, China). A2018-018-01 
is the lot number. Male Sprague-Dawley (SD) rats (6-
8) w old, (180-220) g were acquired from the Animal 
Experiment Center of Xinjiang Medical University 
under animal permit number SYXK (new) 2011-
010101. Before the trial, the rats were domesticated 
for 1 w. In a nutshell, a 12 h preoperative fast 
was carried out, followed by 350 mg/kg of 10 % 
pentobarbital anesthesia and supine immobilization. 
After cleaning and preparing the skin, at the center of 
the abdomen, a 2 cm cut was created. The cecum was 
then removed, the distal 2/3 of the cecum was tied off 
with a 4-gauge ligature, the appendix was punctured 
using two 16-gauge needles with some digestive 
material poking out, the cecum was then retracted into 
the abdomen, and the abdomen was stitched shut[7]. 
50 ml/kg of sodium lactate immediately following 
surgery, all rats received a subcutaneous injection of 
ringer’s solution and nutritional assistance through 
a vein. The identical abdominal incision technique 
was used on the rat that underwent sham surgery, but 
there was no cecum ligation or puncture.

Sample collection:

Rats were put to sleep with pentobarbital (350 mg/
kg), blood was drawn from the abdominal aorta, 
and rat heart tissue was preserved. This was done 
12 h after CLP. The supernatant from centrifuged 
blood samples was collected and kept at -80° after 
being spun at 3500 rpm for 10 min. For pathological 
examination, the hearts were partially stored at -80° 
and submerged in 4 % paraformaldehyde. According 
to the procedure described in the literature[8], the 
preserved heart tissues were sectioned at a thickness 
of 5 μm, immersed in paraffin wax, baked at 60° 
for 30 min to remove the wax, and then rinsed with 
water, stained with hematoxylin-eosin, dehydrated 
in gradient ethanol, made transparent, sealed with 
coverslips after adding the appropriate amount of 
neutral gum dropwise, and allowed to dry in sections 
for observation under a light microscope and 
photographic preservation.

Biochemical indicators:

After centrifuging abdominal aortic blood, the 
supernatant was collected, and Lactate Dehydrogenase 
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(LDH) and Creatine Kinase-Myocardial Band (CK-
MB) were determined following the guidelines. 
Excised cardiac tissue was homogenized in 
Phosphate-Buffered Saline (PBS). Centrifugation 
was used to separate the supernatant for 10 min 
at 8000 g at 4°. According to the guidelines, the 
inflammatory markers IL-10, IL-6 and TNF-α were 
detected in cardiac tissue.

Echocardiography:

Rats were given pentobarbital anesthesia and 
transthoracic echocardiography to evaluate heart 
function 12 h after CLP. A 10 MHz transducer 
equipped M-mode echocardiography machine (KR-
S80) was used to take measurements. Afterward, 
using Vevo Lab 3.1.0 software, cardiac function 
metrics such as Left Ventricular Ejection Fraction 
(LVEF) and Left Ventricular Shortening Fraction 
(LVFS) was calculated.

TUNEL detection:

TUNEL labeling was used to determine the degree 
of apoptosis in each set of cardiomyocytes under the 
TUNEL assay kit’s instructions. Using an Olympus 
FV1000 laser confocal microscope, pictures were 
taken (Olympus, Tokyo, Japan). Using ImageJ 
software, apoptotic fluorescence was evaluated, 
and the proportion from each group’s fluorescence 
intensity in relation to the control condition was used 
to indicate the degree of apoptosis.

Transmission electron microscopy:

12 h after CLP, the rats’ myocardial tissues were 
removed and kept at -80°. To observe mitochondrial 
changes in rat myocardial tissue, ultrathin section 
machine sections were fixed in copper mesh after 
being double stained with uranyl acetate and 
lead citrate, sealed, and photographed. This was 
done after raising the sections in an ethanol series 
and embedding the sections in epoxy resin for 
dehydration.

Cell culture and processing:

H9c2 cells generated from rat embryonic 
cardiomyocytes were incubated in 10 % fetal 
bovine serum and 1 % penicillin/streptomycin-
containing Dulbecco’s Modified Eagle (DMEM) 
medium (BL304A, Biosharp, China) at 37° and 5 
% Carbon dioxide (CO2). H9c2 cardiomyocytes 
were treated with LPS (5 μg/ml) to simulate sepsis 
injury conditions in vitro. In the first experiment, 

H9c2 cells were divided into the following groups, 
control group; LPS-treated group (control+LPS); 
resveratrol-treated group (control+resveratrol); 
resveratrol-treated LPS group (LPS+resveratrol) 
and Dimethyl Sulfoxide (DMSO)-treated LPS 
group (LPS+DMSO). Subsequently, to explore the 
mechanisms through which the protective effect of 
resveratrol on the myocardial model of sepsis occurs, 
the experiments were divided into the following 
groups, control group; LPS group; resveratrol 
group (control+resveratrol); resveratrol-treated 
LPS group (LPS+resveratrol); JNK-activator group 
(control+JNK-activator); JNK-activator-treated 
LPS group (LPS+JNK-activator); JNK-activator 
and resveratrol co-treated LPS group (LPS+JNK-
activator+resveratrol).

Cell viability:

According to the CCK-8 test kit’s instructions, the 
CCK-8 assay was used to measure the viability of the 
cells. In a nutshell, H9c2 cells were seeded in 96-well 
plastic plates with around 3000 cells per well and 
were then treated with various doses of resveratrol 
(with or without LPS); treated independently 
according to the previous grouping. Following the 24 
h treatment period, each well received 10 μl of CCK-
8 solution and was incubated for 3 h at 37° with 5 
% CO2. Subsequently, absorbance at 450 nm was 
measured using an enzyme marker. SpectraMax M5 
spectrophotometer (Molecular Devices, California, 
United States of America (USA)) was used to detect 
changes in the viability of H9c2 cardiomyocytes in 
each group.

Cellular inflammatory cytokines and other 
biochemical indicators:

ELISA kits were used to detect the pro-inflammatory 
factors IL-6 and TNF-α, and the anti-inflammatory 
factor IL-10 in each group of cardiomyocytes. 
Redox-related substances assay, including MDA, 
GPX, and SOD.

Measurement of ROS:

Following the directions on the ROS assay kit, 
DCFH-DA were used to identify mitochondrial ROS 
generation in H9c2 cells. Using an Olympus FV1000 
laser confocal microscope, pictures were taken 
(Olympus, Tokyo, Japan). Using ImageJ software, 
the intensity of the ethidium fluorescence reflecting 
ROS levels was calculated.
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Fig. 1: Resveratrol attenuates CLP-induced myocardial injury in rats. (A): Changes in LVEF in CLP-induced septic rats; (B): 
CLP-induced changes in left ventricular shortening index (FS) in septic rats; (C): Changes in echocardiograms of rats in each group 
and (D): CLP-induced changes in myocardial H&E staining in septic rats
Note: Three times independent duplicate experiments’ findings are presented as the mean±standard deviation (n=3). (*) indicates 
comparison with the control group, where ***p<0.001, ****p<0.0001 and (#) indicates comparison with the sepsis group, where 
###p<0.01 and ####p<0.0001. Scale bars are 50 μm

Vazyme Biotech Co., Ltd., Nanjing, China). Finally, 
the density of the target protein was detected using 
ImageJ software.

Statistical analysis:

Statistical analyses in this study were performed using 
GraphPad Prism software version 9.0 (GraphPad 
Software, Inc., San Diego, California, USA), and all 
values were expressed using the mean and standard 
deviation, and data were compared between groups 
using one-way Analysis of Variance (ANOVA), with 
differences considered statistically significant when 
p<0.05.

RESULTS AND DISCUSSION

The rats had CLP surgery first. In fig. 1A-fig. 1C, 
m-mode echocardiographic pictures are displayed. In 
this study, sepsis caused cardiac systolic dysfunction, 
which was seen in the rats. The rat’s LVEF and LVEF 
were both dramatically decreased (LVFS). Rats with 
septic shock who received resveratrol had much 
better heart health. Similar to how myocardial cell 
morphology was more erratic in the sepsis group 
compared to the control group, myocardial fibers 
were also more disordered. Tissue structure improved 
in the resveratrol-treated group (fig. 1D).

Western blotting:

Total proteins in H9c2 cardiomyocytes were 
extracted using Radio-Immunoprecipitation Assay 
(RIPA) lysate (R0010, Solarbio, China), while the 
concentration of total proteins in them was determined 
later. Separation of total cellular proteins was 
performed using 10 %-12 % Sodium Dodecyl-Sulfate 
Polyacrylamide Gel Electrophoresis (SDS-PAGE), 
after which moved to Polyvinylidene Difluoride 
(PVDF) membranes based on PVDF. The membranes 
were sealed for 15 min at room temperature using 
rapid seal solution (P1626, APPLYGEN, China). 
JNK (1:1000), p-JNK (1:1000), Bcl-2 (1:1000), 
BAX (1:1000), Cyt-C (1:1000), caspase-3 (1:1000), 
cleaved caspase-3 (1:1000) were incubated overnight 
in the refrigerator at 4° in the appropriate ratio. The 
PVDF membranes were washed with Tris-Buffered 
Saline with 0.1 % Tween® 20 detergent (TBST) for 
10 min, 3 times. After that, the PVDF membrane was 
contacted with the corresponding enzyme-labeled 
coupled secondary antibody (1:10 000) for 1 h at 
room temperature and washed again with TBST for 
3 times (10 min, 3 times). Finally, the bands were 
observed and exposed using a Tanon-5200 (Tanon, 
Shanghai, China) imaging system and Enhanced 
Chemiluminescence (ECL) reagent (7E501K1, 
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myocardial inflammatory response, according to 
ELISA findings. Furthermore, the resveratrol therapy 
significantly reduced the effects of CLP on LDH and 
CK-MB in rats (p<0.05, fig. 2D and fig. 2E), and the 
resveratrol treatment elevated IL-10 levels while 
decreasing IL-6 and TNF-α levels. According to the 
aforementioned findings, resveratrol may reduce 
the inflammatory response of CLP-induced SIC and 
attenuate myocardial injury.
After resveratrol treatment, we were able to see a 
significant reduction in TUNEL fluorescence density 
in the CLP+resveratrol group compared to the CLP 
group (fig. 3A-fig. 3C). The mitochondria of rat 
cardiomyocytes in the CLP group were significantly 
swollen and deformed, with a disorganized 
arrangement, significantly reduced internal ridges, 
and significant mitochondrial damage compared to the 
control group, based on the analysis of mitochondrial 
morphology and structure of cardiomyocytes in the 
control group of rats. These findings suggest that 
Res can prevent apoptosis in cardiomyocytes, while 
being able to protect cellular mitochondria from 
CLP-induced cardiac injury. Thus, a link between the 
two is considered.

According to echocardiography revealed significantly 
worsened cardiac function following CLP treatment 
in comparison to controls, which was supported 
by lower levels of LVEF and LVFS. By raising 
LVEF and LVFS levels, resveratrol administration 
dramatically reduced heart dysfunction in septic rats. 
The control group displayed intact cardiomyocyte 
shape and precisely aligned cardiac fibers. The sepsis 
group, however, displayed structural problems. Once 
the resveratrol therapy was given, these traits were 
reduced. Our findings show that the sepsis rat model 
substantially impairs cardiac function and that the 
administration of resveratrol somewhat restored 
cardiac function in these rats, indicating a cardio 
protective effect of resveratrol. 
One of the most harmful pathophysiological 
processes in sepsis-induced heart damage is severe 
inflammatory myocardial injury. We measured 
inflammatory factor levels in rat serum using a 
relevant ELISA kit, as shown in fig. 2A-fig. 2C, to 
investigate the effect of resveratrol on the production 
of inflammatory factors in a rat model of myocardial 
injury in sepsis. Significant increase in serum levels 
of pro-inflammatory factors IL-6 and TNF-α after 
CLP surgery in experimental rats, causing a severe 

Fig. 2: Resveratrol attenuates CLP-induced myocardial inflammatory factors and myocardial injury marker production in rats. 
(A): Serum IL-6 levels in CLP-induced sepsis rats; (B): Serum TNF-α levels in CLP-induced septic rats; (C): Serum IL-10 levels in 
CLP-treated septic rats and (D and E): Serum CK-MB and LDH levels of rats in every group
Note: Three times independent duplicate experiments’ findings are presented as the mean±standard deviation (n=3). In the graph 
(*) indicates comparison with the control group, where ****p<0.0001 and (#) indicates comparison with the sepsis group, where 
###p<0.001 and ####p<0.0001
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In order to investigate the toxic effect on H9c2 
cardiomyocytes when the concentration of 
resveratrol is high, we used different concentrations 
of resveratrol on H9c2 cardiomyocytes. Fig. 
4A, the results obtained showed that resveratrol 
concentrations <20 μM were not toxic to H9c2 cells. 
To simulate sepsis in vivo, we stimulated H9c2 cells 
in vitro with LPS and exposed them to appropriate 
concentrations of resveratrol. Using the CCK-8 kit, 
the activity of H9c2 cardiomyocytes exposed to 
various resveratrol concentrations was measured. In 
the experiment, resveratrol had the greatest effect on 
LPS-induced H9c2 cells at a concentration of 5 μM 
(fig. 4B).
To see if resveratrol could have comparable anti-
inflammatory effects on LPS-stimulated H9c2 cells, 
we measured the levels of their pro-inflammatory 
cytokines IL-6 and TNF-α using ELISA. The 
outcomes matched those of the in vivo tests. 
Inflammatory cytokine levels could be suppressed by 

resveratrol treatment, as shown in fig. 5A-fig. 5C, and 
inflammatory markers were markedly elevated in the 
LPS group. Resveratrol treatment in in vitro cellular 
assays successfully decreased the LPS-induced 
inflammatory reaction in H9c2 cardiomyocytes and 
stimulated the production of the anti-inflammatory 
cytokine IL-10, which is in line with the findings of 
in vivo investigations (fig. 5A-fig. 5C).
To examine resveratrol impact on oxidative stress in 
H9c2 cells that have been exposed to LPS. Using a 
fluorescence microscope, we used a ROS detection 
kit to monitor the generation of ROS in several 
groups of H9c2 cells. Using assay kits, we were also 
able to find the levels of MDA, SOD, and GPX in 
various groups. According to the outcomes of our in 
vitro investigation, resveratrol significantly reduced 
intracellular ROS and MDA production, while 
increasing SOD and GPX production (fig. 6A-fig. 
6E). 

Fig. 3: Resveratrol reduces CLP-induced apoptosis in rat myocardium. (A): Images of the cardiac tissue from each group of  
experimental rats stained with TUNEL fluorescence; (B): Expression of TUNEL fluorescence in rat heart tissues from different 
groups and (C): Changes of mitochondria in rat cardiac muscle tissue cells of different groups
Note: Three times independent duplicate experiments’ findings are presented as the mean±standard deviation (n=3), (*) intended 
for contrasting with the control group, ****p<0.0001 and (#) intended for contrasting with the model group, ###p<0.001 for signifi-
cance
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Fig. 4: Resveratrol improves the viability of H9c2 cardiomyocytes. (A): The H9c2 rat cardiomyocytes’ capacity to survive  
following exposure to various levels of resveratrol and (B): Cell viability of H9c2 cells following exposure to various concentrations of  
resveratrol in the condition of LPS induction
Note: Three times independent duplicate experiments’ findings are presented as the mean±standard deviation (n=3), (*) indicates 
comparison with the control group, ****p<0.0001 and (#) indicates comparison with the LPS group, ####p<0.0001 was significant

Fig. 5: Resveratrol attenuates the inflammatory response of H9c2 cardiomyocytes. (A): Changes of IL-6 in H9c2 cardiomyocytes in 
each group; (B) Alteration of TNF-α in H9c2 cardiomyocytes in each group and (C): Alteration of IL-10 in H9c2 cardiomyocytes 
in each group 
Note: Three times independent duplicate experiment’s findings are presented as the mean±standard deviation (n=3), (*) indicates 
comparison with the control group, where ****p<0.0001 and (#) indicates comparison with the LPS group, where ####p<0.0001
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Our in vitro results showed that resveratrol 
dramatically increased the protein levels of the anti-
apoptotic protein Bcl-2 while considerably decreasing 
the level of the intracellular pro-apoptotic proteins 
BAX and cleaved caspase-3, letting us conclude that 
the effect of resveratrol on apoptosis production in 
LPS-stimulated H9c2 cardiomyocytes (fig. 7A-fig. 
7N). At the same time, LPS markedly increased 
the expression of the Cyt-C protein in H9c2 cells 
compared to the control group, while LPS+resveratrol 
significantly decreased the expression of the Cyt-C 
protein p<0.05 (fig. 7). It implies that LPS promotes 
Cyt-C transfer from mitochondria to cytoplasm and 
that resveratrol can prevent this from happening. In 
addition to this, p-JNK, the upstream protein of the 
above mentioned proteins, was also significantly 
increased by LPS, and this effect was decreased 
after resveratrol treatment. The control group and 
the other group did not have any different values for 
these factors. These values were the same for both 

the control group and the control+resveratrol group. 
Resveratrol was applied to H9c2 cells at a specific 
dose (5 μmol/l) to test whether it has an anti-apoptotic 
impact on LPS-induced H9c2 cardiomyocytes via 
the JNK/BAX/Cyt-C signaling pathway. Western 
blotting results showed that anti-apoptotic and pro-
apoptotic protein expression was upregulated in the 
LPS+resveratrol+JNK-activator group compared 
to the LPS+resveratrol group for Cyt-C, cleaved 
caspase-3 and p-JNK protein expression (fig. 8). 
When resveratrol was not present, the results were 
reversed. In addition, Cyt-C, cleaved caspase-3 and 
p-JNK protein expression levels were significantly 
increased in the LPS+JNK activator group compared 
to the LPS group. As shown in fig. 8A-fig. 8F. In 
conclusion, the protective effect of resveratrol against 
myocardial injury in sepsis may be achieved through 
the signaling pathway JNK/BAX/Cyt-C. 
In septic cardiomyopathy, our study discovered that 

Fig. 6: Resveratrol attenuates oxidative stress in H9c2 cardiomyocytes. (A): ROS generation in H9c2 cardiomyocytes with vari-
ous pharmacological treatments; (B): Expression of ROS production in H9c2 cardiomyocytes in each group; (C): Expression of  
propylene glycol (MDA) in H9c2 cardiomyocytes in each group; (D): Expression of SOD in H9c2 cardiomyocytes in each group and 
(E): Expression of SH-Px in H9c2 cardiomyocytes in each group
Note: Three times independent duplicate experiments’ findings are presented as the mean±standard deviation (n=3). (*) indicates 
comparison with the control group, where ****p<0.0001 and (#) indicates comparison with the LPS group, where ####p<0.0001. Scale 
bar are 1 mm
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Fig. 7: Resveratrol regulates the activity of apoptosis-associated proteins. Immunoblotting of BAX, Bcl-2, caspase-3, cleaved 
caspase-3, Cyt-C, JNK and p-JNK protein expression in H9c2 cardiomyocytes of (A-N): Resveratrol decreased the activity of BAX, 
Cyt-C, cleaved caspase-3 and p-JNK, while the activity of Bcl-2 was increased
Note: Three times independent duplicate experiments’ findings are presented as the mean±standard deviation (n=3), (*) indicates 
comparison with the control group, where *p<0.05, ****p<0.0001 and (#) indicates comparison with the LPS group, where ##p<0.01, 
###p<0.001 and ####p<0.0001

Fig. 8: JNK agonist regulates the expression of apoptosis-related proteins. (A): Immunoblotting of caspase-3, cleaved caspase-3, 
Cyt-C, JNK and p-JNK protein expression in H9c2 cardiomyocytes from each group and (B-F): JNK agonists acted identically to 
LPS, increasing the activity of Cyt-C, cleaved caspase-3 and p-JNK, and resveratrol was able to partially reverse this effect
Note: Three times independent duplicate experiments’ findings are presented as the mean±standard deviation (n=3), (*)  
indicates comparison with the control group, where **p<0.01, ****p<0.0001; (#) indicates comparison with the sepsis group, #p<0.05, 
##p<0.001, ####p<0.0001; ($) indicates comparison with the LPS+resveratrol group, where $p<0.05, $$$$p<0.0001 and (^) indicates com-
parison with the LPS+JNK-activator group, ^p<0.05 and ^^^^p<0.0001 
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Oxidative stress, inflammation, cardiomyocyte 
apoptosis[14-16], calcium response[17], and 
coronary microvascular dysfunction[18] are the 
primary pathophysiological processes of septic 
cardiomyopathy. The inflammatory response is 
an important response in the acute infection phase 
of sepsis, during which the body will produce an 
inflammatory waterfall response with a massive 
increase in the pro-inflammatory factor IL-6 and 
tumor necrosis factor alpha, leading to an imbalance 
of endothelial and cardiomyocyte death. During 
this period, the body’s ROS are produced in large 
quantities, while at the same time, the Reactive 
Nitrogen Species (RNS) level will increase. 
Excessive ROS generation can harm the heart, 
directly harm the structure of cardiomyocytes, and 
encourage apoptosis when there is an imbalance 
between oxidative and antioxidative processes[19]. 
Moreover, increased ROS production might decrease 
the endothelium-dependent vasodilatory response, 
exacerbate microcirculatory abnormalities, damage 
vascular endothelial cells during sepsis, and worsen 
cardiac inflammation.
We discovered that the LPS group had considerably 
more ROS accumulation than the normal group. 
Resveratrol, on the other hand, dramatically reversed 
these effects. In accordance with this observation, 
resveratrol treatment significantly enhanced the 
expression of Bcl-2 while decreasing BAX and 
cleaved caspase-3 protein levels in septic rats, as 
evidenced by a reduction in TUNEL-positive cell 
density. The results obtained from our in vitro assays 
were corroborated by those obtained from in vivo 
experiments. Furthermore, in order to assess the 
extent of cardiac inflammation in infected rats, we 
measured the levels of pro-inflammatory cytokines 
including IL-6 and TNF-α in the cardiac tissues and 
blood samples of each group. Our findings indicate 
that the septic group exhibited a marked increase in 
the concentration of IL-6 and TNF-α compared to 
the control group. Resveratrol therapy relieved these 
traits, and in vitro tests with the same outcomes as in 
vivo tests were able to validate this.
In conclusion, significant pathophysiological signs 
and symptoms of sepsis include oxidative stress, 
inflammation, and myocardial apoptosis. Our study 
suggests that resveratrol may reduce CLP- and LPS-
induced myocardial oxidative stress, apoptosis and 
inflammatory damage.
Cyt-C is an important substance in mitochondrial 
apoptosis, which is released from the outer 

resveratrol reduces cardiomyocyte apoptosis via a 
JNK/BAX/Cyt-C-dependent pathway and also has an 
impact on reducing inflammation and oxidative stress. 
According to our in vivo findings, the protection of 
resveratrol against myocardial injury in sepsis is 
achieved by reducing the occurrence of inflammatory 
responses, decreasing the formation of reactive 
oxygen species, and inhibiting cardiomyocyte 
apoptosis. Further in vitro investigations revealed 
that resveratrol primarily controls the JNK/BAX/
Cyt-C signaling pathway to reduce apoptosis in 
cardiomyocytes. The mitochondrial apoptotic 
pathway can initiate apoptosis, an active form of 
cell death[9,10]. Overall, the present results show that 
resveratrol is able to treat myocardial injury in sepsis 
by inhibiting JNK/BAX/Cyt-C signaling pathway-
mediated apoptosis.
Herbal therapy has been extensively researched in 
recent years and shown to be remarkably effective 
in treating septic cardiomyopathy. Resveratrol has 
recently been shown to be able to reduce the iron 
death impact on rat cardiac damage caused by CLP 
via the Sirt1/Nrf2 signaling pathway[11]. Being a 
significant plant antitoxin, resveratrol also has a 
number of  health benefits, including anticancer, 
cardiovascular system protection, anti-apoptosis, 
antioxidant, anti-free radical, antibacterial, antiviral, 
anti-inflammatory, and immunomodulatory 
properties. It has received extensive and in-depth 
study and application in the sectors of nutraceuticals, 
food, medicine, and plant physiology both 
domestically and internationally in recent years[12]. 
In the beginning, our team preliminarily examined 
the impact of resveratrol components on anti-iron 
mortality in septic cardiomyopathy and studied the 
impact of resveratrol on it[11-13]. Thus, we reasoned 
that resveratrol may via anti-apoptosis; also enhance 
heart function in sepsis patients. In this study, we 
examined the cardiac function of rats in each group 
using echocardiography and the myocardial cell 
morphology of rats in each group using Hematoxylin 
and Eosin (H&E) staining to test the hypothesis of 
this experiment. We observed that the intraperitoneal 
injection of resveratrol 0.5 h after CLP surgery 
significantly improved the cardiac function of rats 
with sepsis, and their cardiomyocyte morphology 
was more perfect than that of the septic group. Being 
a biologic with significant therapeutic potential 
and low toxicity, resveratrol will undoubtedly 
get significant interest. This study offers a fresh 
viewpoint on how to manage septic cardiomyopathy.
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pathway. Our results showed that agonizing JNK 
greatly increased LPS-induced myocardial injury 
and inhibited the ability of resveratrol to protect 
against infectious myocardial injury. In conclusion, 
our findings demonstrate that resveratrol elicits 
cardio protective effects in sepsis by inhibiting the 
JNK/BAX/Cyt-C signaling pathway and attenuating 
oxidative stress, inflammation, and apoptosis in the 
myocardial tissue. These results introduce a fresh 
avenue for the pharmaceutical treatment of cardiac 
injury in individuals with sepsis.
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