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Kumar et al.: Synthetic Approaches to Pyridine and Analogs

On basis of various research reports, pyridine was found to possess a wide spectrum of pharmacological 
activities along with many other industrial applications. Because of its diverse applications, pyridine moiety 
is the centre of attraction for researchers and a large number of patents have been granted focusing on it. 
Several synthetic protocols such as cyclo-condensation, cyclization, cycloaddition, electrolysis, etc., were used 
by researchers to synthesize pyridine and analogs.  Each synthetic protocol has its merits and demerits and 
required several types of reagents, catalysts and reaction conditions. So, there is always a need for careful 
analysis of reported synthetic protocols whenever researchers like to initiate research consisting of the 
synthesis of pyridine and its analogs.
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Nitrogen comprising heterocyclic moieties has 
high pharmacologically active molecules[1]. 
Pyridine (C5H5N) is a six-membered heterocyclic 
compound that exists as a colourless liquid at room 
temperature, is water-soluble and has an acrid 
smell[2]. It was discovered by Scottish chemist 
Thomas Anderson in 1849. Arthur Hantzch 
afterward synthesized pyridine compounds in 1881 
through a multi-component reaction, consisting 
of β-ketoester, an aldehyde and ammonia[3]. 
Like benzene, all pyridine ring atoms are sp2 
hybridized involving π electron resonance. The 
N atom is highly electronegative and its lone 
pair in an aromatic environment makes pyridine 
distinctive in chemistry[3]. The presence of an 
electronegative nitrogen atom in the ring prevents 
equal distribution of electron density over the ring 
because of its negative inductive effect causing 
weaker resonance stabilization[2]. Pyridine is 
also used as a chemical solvent and reagent[4]. 
Pyridine is found in many natural products like 
vitamins such as niacin, pyridoxal phosphate, 
alkaloids like nicotine and many drugs[5]. Based on 
numerous research reports pyridine was found to 
be effective as an anti-cancer[6], anticonvulsant[7], 
anti-microbial[8], anti-tubercular[9], anti-viral[10], 
anti-depressant[11], anti-inflammatory[12], anti-

diabetic[13], anti-Alzheimer[14], analgesic agent[15]. 
Pyridine also has many other industrial applications, 
such as optics[16] and agrochemicals[17]. The targets 
for pyridine and its derivatives are diverse such 
as enzymes, proteins and deoxyribonucleic 
acid[18,19]. This pyridine ring is a biologically 
active core (pharmacophore) in a large number of 
pharmaceutically available drugs (Table 1)[20-27].
Due to the wide range of pharmacological 
and industrial applications of pyridine, it has 
always been the focus of researchers. Several 
patents have been granted on the synthetic 
and pharmacological works related to pyridine 
and its derivatives. The recently granted 
patents in 2022 are highlighted in Table 2[28-39].  

SYNTHETIC APPROACHES

The synthesis of pyridine involves several 
methods like Chichibabin synthesis, Bonnemann 
cyclization, Krohnke pyridine synthesis, 
Gattermann-Skita synthesis and several other 
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methods. In Chichibabin pyridine synthesis firstly, 
acrolein is formed via Knoevenagel condensation 
from acetaldehyde and formaldehyde, then acrolein 
condenses with acetaldehyde and ammonia to give 
aminopyridine[40]. In Bonnemann cyclization, the 
trimerization of one part of a nitrile molecule and 

two parts of acetylene gives pyridine[41]. In Krohnke 
pyridine synthesis, the reaction of pyridine with 
bromomethyl ketones gives related pyridinium 
salt[42]. In Gattermann-Skita synthesis, malonate 
ester was made to react with dichloro methylamine[43].

TABLE 1: MARKETED DRUGS BEARING PYRIDINE RING

S. no Drug Company Description

1 Prevacid Cipla Proton-pump inhibitor

(Lansoprazole)[20]

2 Clarinex Dr. Reddy's Laboratories NSAID for allergic rhinitis and 
urticaria

(Desloratadine)[21]

3 Xalkori Pfizer Anticancer

(Crizotinib)[22]

4 Solonex Macleods Tuberculosis

(Isoniazid)[23]

5 Torsemide[24] Cipla Anti-hypertensive

6 Phenazopyridin[25] Menarini Lower urinary tract infections

7 Tedizolid[26] Cubist Pharmaceuticals Antibiotic

8 Alpelisib[27] Novartis Anticancer

TABLE 2: LIST OF PATENTS BEARING PYRIDINE RING

Patent date Patent No. Description

10-Nov-22 US20220359090A1[28] Predisposition determination of health conditions

27-Oct-22 US20220340874A1[29] Enhanced expansion of tumor-infiltrating lymphocytes

27-Oct-22 US20220339154A1[30] Generating inner ear hair cells for the treatment of hearing loss

20-Oct-22 US20220331334A1[31] Prodrug comprising a drug-linker conjugate

20-Oct-22 US20220331282A1[32] Neutral Endopeptidase inhibitor (NEPi)

13-Oct-22 US20220324872A1[33] Cyclin-dependent kinase 2/4/6 Inhibitors

13-Oct-22 US20220325360A1[34] Methods for computer processing sequence reads to detect molecular 
residual disease

22-Sep-22 US20220296496A1[35] Topical skin care formulations comprising plant extracts

22-Sep-22 US20220296575A1[36] Pharmaceutical compositions

22-Sep-22 US20220296863A1[37] Drug-releasing coatings for medical devices

08-Sep-22 US20220281854A1[38] Combination therapy for treating cancer

15-Sep-22 US20220288229A1[39] Targeted conjugates encapsulated in particles and formulations
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Green synthesis:

Dohare et al.[44] introduced ultrasound-induced 
synthesis of 3,5-dimethyl-4-phenyl-1,4,7,8-
tetrahydrodipyrazolopyridine (5). The reaction 
takes place between hydrazine hydrate (1), 
β-dicarbonyl compound (2), substituted aldehydes 
(3) and ammonium acetate (4) using ethanol 
as a catalyst. The whole reaction takes 30-
40 min to complete (fig. 1a). Biswas et al., 
synthesized 2-benzoyl-4,6-diphenylpyridine 
(8) from cyclic sulfamidate imines (6) and β,γ-
unsaturated α-keto carbonyl (7) in the presence 

of 1,4-diazabicyclo[2.2.2]octane. The reaction 
concoction was exposed to microwave irradiation 
in an open atmosphere at 70° for 30-40 min giving 
the desired product benzoyl-4,6-diphenylpyridine 
(fig. 1b)[45]. Raja et al., showed the synthesis 
of 2-(1-benzyl-5-methyl-1H-1,2,3-triazol-4-
yl)-4,6-diphenylpyridine (12) by microwave-
assisted reaction. The product was synthesized 
by a reaction of 1-benzyl-5-methyl-1,2,3-triazol-
4-yl-3-arylprop-2-en-1-ones (9), ammonium 
acetate (10) and ketone (11) in water. The product 
was obtained with a yield of 90 % (fig. 1c)[46].

Fig. 1: Schematic representation of synthesis of compounds, (a): 3,5-dimethyl-4-phenyl-1,4,7,8-tetrahydrodipyrazolopyridine; 
(b): 2-benzoyl-4,6-diphenylpyridine; (c): 2-(1-benzyl-5-methyl-1H-1,2,3-triazol-4-yl)-4,6-diphenylpyridine; (d): 2-arylpyridines 
and (e): 3-fluoropyridine

(a)

(b)

(c)

(d)

(e)
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60 % yield (fig. 1e)[47]. 
Rhodium (Rh) (III)-catalyzed synthesis: Chen 
et al., synthesized a one-step method for the 
preparation of 3-fluoropyridine (18) from α-fluoro-
α,β-unsaturated oximes (16) with terminal alkyne 
(17) by Rh(III)-catalyzed C-H functionalization 
(fig. 1)[48]. 

Cyclization:

In presence of PTSA: Ghodse et al., showed 
the synthesis of 2-phenyl pyridine (21) by 
acetophenone (19) and 1,3-diaminopropane (20) 
in presence of palladium acetate and PTSA in 
tetrahydrofuran as solvent at reflux temperature 
for 10 h in presence of oxygen. The product 
was obtained with a good yield (fig. 2a)[49].

Metal-catalyzed reaction:

Copper (Cu)-catalyzed synthesis: Xi et al., 
stated Cu-catalyzed aerobic reaction for the 
synthesis of 2-arylpyridines (18). On heating 
acetophenone (13), with 1,3-diamino propane (14) 
in the presence of Copper(II) triflate (Cu(OTf)2) 
in ethanol for 80° in an oxygen environment for 
72 h giving 2-arylpyridine with 22 % yield (fig. 
1d); The second method consists of a reaction of 
13 with 14 in the presence of Cu(OTf)2 in ethanol 
and benzoic acid giving 2-arylpyridine with 51 
% yield (fig. 1d). The third method consists of 
acetophenone with 1,3-diamino propane in the 
presence of Cu(OTf)2 in ethanol and p-Toluene 
Sulphonic Acid (PTSA) giving 2-arylpyridine with 

Fig. 2: Schematic representation of synthesis of compounds, (a): 2-phenyl pyridine; (b): 6-amino-4-methyl-1-phenyl-5  
(5-thioxo-4,5-dihydro-1,3,4-oxadiazol-2-yl)pyridine-2(1H)-one; (c): 5-iodo-2,4-diphenylpyridin-3-yl(phenyl) methanone; (d):  
Methyl-2-phenylnictoniate and (e): 2,6-diphenylpyridin-3-ol
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sodium (E) and (Z)-(2-oxocyclopentylidene) 
methanolate (37) was produced from the reaction 
of cyclopentanone (36) with freshly-prepared 
sodium methoxide and methyl formate. Secondly, 
(Z)-(2-oxocyclopentylidene) methanolate was 
made to react with cyanothioacetamide and 
piperidinium acetate followed by acidification with 
acetic acid giving 2-thioxo-2,5,6,7-tetrahydro-
1H-cyclopenta[b] pyridine-3-carbonitrile (38). 
Further, 2-bromo-N-phenylacetamide (40) was 
synthesized from the reaction between aniline 
(39) and bromoacetyl bromide in presence of 
triethylamine. Lastly, 2-bromo-N-phenylacetamide 
was mixed with 2-thioxo-2,5,6,7-tetrahydro-1H-
cyclopenta[b] pyridine-3-carbonitrile in presence 
of anhydrous sodium carbonate in absolute ethanol 
giving desired product in 55 % yield (fig. 3c)[56]. 
By regioselective cyclization: Luo et al., reported 
the synthesis of N-benzyl-4,6-diphenylpyridin-
2-amine (44) by regioselective Michael reaction, 
cyclization and loss of one molecule of NO2. In this, 
when α, β-unsaturated ketones (42) and reductive 
aminases (43) in presence of 1,4-dioxane as solvent 
was made to react with 1,4-dioxane. Further 
piperidine was added to the mixture and the solution 
was stirred at heating conditions (fig. 3d)[57]. 

Condensation reaction:

Motati et al., demonstrated that 7-azaindoles 
(48) were synthesized through a multicomponent 
condensation reaction. The reaction occurs 
between 2-amino-4-cyano pyrrole (47) with 
compounds having active methylene group (45) 
and different aldehydes (46) followed by oxidation 
using AcOH and AcONH4 as catalysts (fig. 3e)[58].
Peicherla et al., established the synthesis of 
imidazo[1,2-a]pyridine (51) by using cyclo-
condensation. The reaction forms an intermediate 
of α-halo carbonyl compound (50) by the reaction 
of alkenes (49) in the presence of 2-iodoxy-benzoic 
acid/iodine/dimethyl sulfoxide. Further, the α-iodo 
ketones (50) were mixed with 2-aminopyridine 
in presence of K2CO3 and dimethylformamide to 
give imidazo[1,2-a]pyridine. The product was 
obtained with a yield of 55 %-71 % (fig. 4a)[59]. 

Addition reaction:

By ammonium acetate+β-dicarbonyl compound 
cycloaddition: Bartko et al., designed the 
synthesis of 3-ethyl-4-methyl-2-tosyl-5,6,7,8-
tetrahydroquinoline (63) in presence of 

In the presence of triethylamine: Albratti 
et al., synthesized oxadiazole-based pyridine 
derivative 6-amino-4-methyl-1-phenyl-5(5-
t h i o x o - 4 , 5 - d i h y d r o - 1 , 3 , 4 - o x a d i a z o l - 2 - y l )
pyridine-2(1H)-one (24). When 2-(5-thioxo-4,5-
dihydro-1,3,4-oxadiazole-2-yl) acetonitrile (22) 
reacts with acetylacetone or acetoacetanilide 
to form 4-cyano-3-methyl-N-phenyl-4(5-
t h i o x o - 4 , 5 - d i h y d r o - 1 , 3 , 4 - o x a d i a z o l e - 2 - y l )
but-3-enamid (23). 1,5-diphenylpent-4-yn-
1-one oxime goes through cyclization to 
afford 2,6-diphenylpyridin-3-ol (fig. 2b)[50]. 
By electrophilic cyclization: Karadeniz et al., 
showed a facile electrophilic cyclization for 
the synthesis of 5-iodo-2,4-diphenylpyridin-3-
yl (phenyl)methanone (26) from N-propargylic 
β-enaminones (25) in the presence of CH3CN, 
NaHCO3 and iodine at 82°. The product was 
obtained with an 80 % yield (fig. 2c)[51]. 
2-Iodoxybenzoic acid-mediated selected 
oxidative cyclization: Gao et al., reported 
the synthesis of methyl-2-phenylnictoniate 
(28) by reaction of enaminoesters (27) bearing 
hydroxypropyl derivatives, which were made 
to react with 1.6 equivalent of 2-iodoxybenzoic 
acid in tetrahydrofuran as solvent gave 
desired product with 82 % yield (fig. 2d)[52]. 
By Potassium carbonate (K2CO3)-mediated 
cyclization: Wang et al., designed K2CO3-mediated 
cyclization and rearrangement of γ,δ-alkynyl 
oximes for the synthesis of 2,6-diphenylpyridin-
3-ol (30). Compound (E)-1,5-diphenylpent-4-yn-
1-one oxime (29) in presence of K2CO3 as base 
and glycerol as solvent at 120° for 12 h giving 
2,6-diphenylpyridin-3-ol in 74 % yield (fig. 2e)[53]. 
By metal-free cyclization: Huang et al., reported 
synthesis for 2,4-diphenyl pyridine (33) by 
reaction of o-acetyl ketoxime (31) and α,β-
unsaturated aldehydes (32) in presence of iodine, 
triethylamine and toluene as solvent (fig. 3a)[54]. 
By Cu-catalyzed cyclization: Zhang et al., 
synthesized 2,4,6-triphenyl-pyridine (35) in 
presence of acetophenone (34) and NH4AOc, 
using Cu(OTf)2 as a catalyst in the solvent-
free environment releasing CH4. The product 
was obtained with a yield of 71 % (fig. 3b)[55]. 
By concomitant cyclization: Arabhshahi et al., 
showed the synthesis of 3-amino-N-phenyl-6,7-
dihydro-5H-cyclopenta[b]thieno[3,2-e]pyridine-
2-carboxamide (41) in a three-step process. Initially, 
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pyridine (69) from ynones (67) and 1-arylethamine 
(68) through intramolecular Michael addition 
reaction in presence of dimethyl sulfoxide and 
potassium tert-butoxide at 100° under an air 
atmosphere. The product was obtained with a 68 % 
yield (fig. 4d)[62]. Song et al., reported the synthesis 
of 2,3,4-trisubstituted pyridines (72a-c) by reaction 
of α-fluoro-β-ketoester (70) reacted with α, 
β-unsaturated aldehydes (71) as Michael acceptors 
in presence of Cs2CO3 and MeCN at 60° (fig. 4e)[63]. 

1-(cyclohexyl-1-en-yl)-5-phenylpent-1-yn-3-ol 
(62) in presence of toluenesulfonyl cyanide and 
toluene as solvent (fig. 4b)[60]. Wu et al., reported 
the synthesis of bipyridines (66) by reaction 
of N-vinyl amide (64) and alkyne (65) in the 
presence of [(p-cymene RuCl2]m, Na2CO3, KOAc 
and toluene at 100° under argon atmosphere at 56 
h gave highly substituted bipyridines (fig. 4c)[61].  
By Michael addition: Shen et al., reported the 
synthesis of 4-phenyl-2-(thiophen-2yl)-6-(p-tolyl) 

Fig. 3: Schematic representation of synthesis of compounds, (a): 2,4-diphenyl pyridine; (b): 2,4,6-triphenyl-pyridine; (c): 3-amino- 
N-phenyl-6,7-dihydro-5H-cyclopenta[b]thieno[3,2-e]pyridine-2-carboxamide; (d): N-benzyl-4,6-diphenylpyridin-2-amine and (e): 
7-azaindoles
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room temperature. When it reached room 
temperature propargyl azide was added 
along with triphenylphosphine. The product 
was obtained with a 79 % yield (fig. 5b)[65]. 

Annulation type reaction:

By Hantzch-type annulation: Huang et al., 
displayed the synthesis of 2,3,4,6-tetrasubstituted 
pyridines (82a-b) by a three-component reaction 
of oximes (80) with trifluoromethyl-diketones 
(81) and aldehydes in presence of NH4I and 
triethylamine giving 2,3,4,6-tetrasubstituted 
pyridines in moderate yields (fig. 5c)[66]. 
By Ammonium iodide (NH4I)-triggered 
(ammonium acetate+β-dicarbonyl compound) 
annulation: Duan et al., designed and 
synthesized ethyl-2,6-diphenylisonicotinate (85). 
The reaction between ketoxime-enoates (83) 

Electrolysis: 

Upadhyay et al., synthesized 7-amino-1,2,3,4-
tetrahydro-1methyl-2,4-dioxo5-phenyl-pyrido 
[2,3-d] pyrimidine-6-carbonitrile (76) by an 
electrochemical induced transformation of 
aryl aldehydes (73), malononitrile (74) and 
6-aminouracil (75) in presence of NaBr in 
ethanol giving 7-amino-1,2,3,4-tetrahydro-
1methyl-2,4-dioxo5-phenyl-pyrido [2,3-
d] pyrimidine-6-carbonitrile (fig. 5a)[64]. 

Wittig reaction:

Wei et al., gave an efficient strategy for the 
synthesis of 2,5-dimethyl-4-pyridine (79). Wittig 
reaction of benzaldehyde (77) and phosphorus 
ylide (78) was conducted at a temperature 
of 90° for 5 h in the presence of PhMe. 
The mixture was then cooled until it reached 

Fig. 4: Schematic representation of synthesis of compounds, (a): Imidazo[1,2-a]pyridine; (b): 3-ethyl-4-methyl-2-tosyl-5,6,7,8- 
tetrahydroquinoline; (c): Bipyridine; (d): 4-phenyl-2-(thiophen-2yl)-6-(p-tolyl)pyridine and (e): 2,3,4-trisubstituted pyridines
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comprises the protection of the 5-hydroxyl group of 
kojic acid with a benzyl group, by a reaction of benzyl 
chloride leading to the formation of 5-benzyloxy-
2-(hydroxymethyl)-4H-pyran-4-one (102). 
It was further converted into 5-benzyloxy-
2 - ( h y d r o x y m e t h y l ) p y r i d i n e - 4 ( 1 H ) -
one by reaction with aqueous ammonia 
under reflux conditions (fig. 6d)[71].
By using methyl pyruvate: Sun et al., synthesized 
2-quinolinecarboxylic acid (105) by treating 
2-nitrobenzaldehyde (104) with ferrous sulphate and 
ammonia in the presence of N, N-dimethylformamide 
giving 2-aminobenzaldehyde (104). 
Further, 2-aminobenzaldehyde was treated 
with methyl pyruvate in alkaline conditions 
giving 2-quinolinecarboxylic acid (fig. 6e)[72].
In conclusion, this article mainly highlights newly 
stated synthetic procedures for pyridine-containing 
compounds accompanied by pharmacological 
activity and structure-activity relationship. In this, 
different approaches for the synthesis of pyridine 
derivatives like green synthesis, metal-catalyzed 
reaction, condensation, cyclization, addition, 
annulation-type reaction, etc., are reported. Out 
of these, green synthesis was reported as most 
easy and time-saving method, as they need easily 
available solvents (water, ethanol) and operate at an 
optimum temperature (70°-100°) requiring lesser 
time (30-40 min) as compared to conventional 
methods. 
Metal-catalyzed reactions were found not so 
favourable for small scale preparations as 
they required expensive solvents (i-PrOH, 
2,2,6,6-tetramethylpiperidine 1-oxyl radical, 
tert-butyl alcohol), yields were also found to be 
moderate but reagents required were easily available 
(cyclohexanone, acetophenone, propiophenone). 
Further, cyclization reactions showed good yield 
of derivatives (55 %-85 %) and mostly easily 
available reagents were used (ketones). In addition 
reaction, optimum temperature was used (50°-
110°) and mostly least expensive solvent was 
used (toluene). Lastly, an annulation-type reaction 
was carried out at 120° for approximately 8-12 
h showing moderate to good yields using easily 
available solvent (toluene, 1.4-dioxane). In the 
structure-activity relationship section, a link was 
recognized between various pyridine-containing 
derivatives and functional groups. 
Pyridine is a pharmacologically active moiety 

and N-acetyl enamide (84) in presence of NH4I 
and sodium bisulfate, the product was obtained 
when 1,4-dioxane was added and the mixture was 
stirred for 8 h at 120° with 83 % yield (fig. 5d)[67]. 

Miscellaneous:

By using glacial acetic acid: Maria et al., 
synthesized pyrazolo[3,4-b] pyridine (88) 
by reacting 3-substituted-(5-amino-1H-
pyrazol-1-yl) benzenesulfonamide (86) with 
trifluoromethyl-β-diketone (87) (fig. 5e)[3]. 
By using Phosphoryl chloride (POCl3): 
Salem et al., synthesized 2-chloro-4-(furan-
2 - y l ) - 6 - ( n a p h t h a l e m - 1 - y l ) - n i c o t i n o n i t r i l e 
(92) by the four-component reaction. 
Firstly, the one-pot reaction between 
1-acetylnaphthalene (89), furfural (90), ethyl 
cyanoacetate and ammonium acetate in absolute 
ethanol giving 4-(furan-2-yl)-6-(naphthalen-1-
yl)-2-oxo-1,2-dihydropyridine-3-carbonitrile (91). 
Secondly, the chlorination of enaminoesters 
in a mixture of phosphorus oxychloride 
and phosphorus pentachloride was heated 
giving off 2-chloro-4-(furan-2-yl)-6-
(naphthalem-1-yl)-nicotinonitrile (fig. 6a)[68]. 
By using malononitrile: Siddiqui et al., 
designed and synthesized 2-amino-6-(3,5-
d i p h e n y l - 4 , 5 - d i h y d r o p y r a z o l - 1 - y l ) - 4 - ( 4 -
hydroxyphenyl) nicotinonitrile (97). The 
reaction takes place among substituted 
acetophenone (93) and benzaldehyde (94) giving 
1-(hydroxy phenyl)-3-phenylpropenones (95). 
1-(hydroxy phenyl)-3-phenylpropenones on 
reaction with hydrazine hydrate gave 1-(3-hydroxy 
p h e n y l - 5 - p h e n y l - 4 , 5 - d i h y d r o p y r a z o l - 1 -
yl) ethanones (96), was further treated with 
malononitrile and ammonium acetate and refluxed 
for 10 h giving 2-amino-6-(3,5-diphenyl-4,5-
d i h y d r o p y r a z o l - 1 - y l ) - 4 - ( 4 - h y d r o x y p h e n y l ) 
nicotinonitrile in good yield (fig. 6b)[69]. 
By using piperidine: Kamal et al., synthesized 
some new heterocyclic pyridine derivative 3-cyano-
4,6-dimethylpyridine-2(1H)-one (100) from the 
reaction of malononitrile (98) with acetylacetone 
(99) to give 3-cyano-4,6-dimethylpyridine-2(1H)-
one (fig. 6c)[70].
By using aqueous ammonia: Lachowicz et 
al., presented a synthesis of 5-benzyloxy-2-
(hydroxymethyl)pyridine-4(1H)-one (103) 
obtained by using kojic acid (101). Firstly, it 
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Fig. 5: Schematic representation of synthesis of compounds, (a): 7-amino-1,2,3,4-tetrahydro-1methyl-2,4-dioxo5-phenyl-pyrido 
[2,3-d]pyrimidine-6-carbonitrile; (b): 2,5-dimethyl-4-pyridine; (c): 2,3,4,6-tetrasubstituted pyridines; (d): Ethyl-2,6- 
diphenylisonicotinate and (e): pyrazolo[3,4-b] pyridine
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Scheme 21. Synthesis of 7-amino-1,2,3,4-tetrahydro-1methyl-2,4-dioxo5-phenyl-pyrido[2,3-d]pyrimidine-6-carbonitrile
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Scheme 22. Synthesis of 2,5-dimethyl-4-pyridine
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Scheme 23. Synthesis of 2,3,4,6-tetrasubstituted pyridines
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Scheme 24. Synthesis of ethyl 2,6-diphenylisonicotinate

NN

SO2NH2

H2N

F3C R2

OH O glacial AcOH

reflux,  12h
NN

N

H3C CF3

SO2NH2

86 87 88

Scheme 25. Synthesis of pyrazolo[3,4-b] pyridine

that this article provides much-needed recent 
information to researchers who are engaged with 
pyridine in any way.

exhibiting anti-cancer, anti-viral, anti-depressant, 
anti-convulsant, anti-diabetic, anti-inflammatory, 
anti-tubercular, and anti-microbial. We hope 
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Fig. 6: Schematic representation of synthesis of compounds, (a): 2-Chloro-4-(furan-2-yl)-6-(naphthalem-1-yl)-nicotinonitrile; (b): 
2-amino-6-(3,5-diphenyl-4,5-dihydropyrazol-1-yl)-4-(4-hydroxyphenyl)nicotinonitrile; (c): 3-cyano-4,6-dimethylpyridine-2(1H)-one; 
(d): 5-benzyloxy-2-(hydroxymethyl)pyridine-4(1H)-one and (e): 2-quinolinecarboxylic acid
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Scheme 26. Synthesis of 2-Chloro-4-(furan-2-yl)-6-(naphthalem-1-yl)-nicotinonitrile
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Scheme 27. Synthesis of 2-amino-6-(3,5-diphenyl-4,5-dihydropyrazol-1-yl)-4-(4-hydroxyphenyl)nicotinonitrile
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Scheme 28. Synthesis of 3-cyano-4,6-dimethylpyridine-2(1H)-one
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Scheme 29. Synthesis of 5-hydroxy-2-(hydroxymethyl)pyridine-4(1H)-one
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Scheme 30. Synthesis of 2-quinoline carboxylic acid
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