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Mishra: Quantum Dots Based Cancer Theranostic

Cancer is among the main reasons of mortality worldwide. Early diagnosis offers the best chance of 
recovery for cancer patients. Scientists are still unable to successfully treat cancer spreading to various 
vital organs, despite the considerable strides in understanding the complex mechanisms leading to 
cancer formation and metastasis in recent years. The processes of tumor invasion, carcinogenesis and 
metastasis are still unclear because of the complexity of cancer cells and the microenvironment of tumors. 
Therefore, to understand the intricate molecular information underpinning the biological behaviours of 
tumors, it is imperative to develop a novel technology for cancer diagnosis and real-time observation 
right away. Quantum dots are luminescent semiconductor nanocrystals with a nanometer size range. 
Due to their unusual optical properties, including excellent brightness, simultaneous detection of many 
signals, long-term stability and adjustable emission spectra, they appeal as potential diagnostic and 
therapeutic systems in cancer. Due to their high quantum yields, low toxicity, biocompatibility and 
flexibility for various surface modifications, quantum dots are currently promising for bioanalytical 
investigations. The capacity of quantum dots for multiplexed sensing with various emission wavelengths 
to simultaneously detect a variety of biomarkers of illness is intriguing.
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Cancer is one of the leading causes of death 
worldwide[1]. According to estimates, 9.6 million 
fatalities in 2018 (or 1 in every 6 deaths) were 
attributed to cancer. World Health Organization 
(WHO) stated that around 70 % of cancer-related 
fatalities occurred in Low- to Middle-Income Nations 
(LMINs). Researchers have predicted that by 2030, 
there will be 16-18 million more instances of cancer 
annually, 60 % of which will occur in emerging 
nations. According to the WHO, only 12 nations 
are anticipated to achieve a reduction of one-third 
in early cancer death by 2030[2]. More money must 
be spent on treating non-communicable illnesses like 
cancer if sustainable development goals are to be 
met[3].
The increasing prevalence of cancer puts enormous 
physical, emotional and financial strains on people, 
families and ultimately, the world's health systems. 
Many cancer patients globally cannot obtain a timely 
diagnosis and treatment because health agencies in 
LMINs are the least prepared to handle this load. 
Only 1 in every 5 LMINs possesses the data required 
informing the cancer treatment and mitigation 
strategy, although the global cost of treatment for 

cancer in 2010 was predicted to be 1.16 trillion United 
States Dollars (USD). According to reports, between 
30 % and 50 % of all cancer cases are preventable and 
may be treated with a long-term, cost-effective plan. 
The prognosis-quality therapy and survivorship care 
are increasing the survival rates of cancer patients 
in many different nations[4]. Due to the intricacy 
of cancer cells and the Tumor Microenvironment 
(TME), the processes of carcinogenesis, cancer 
invasion and metastasis are yet unknown. Therefore, 
it is essential to create a unique method for cancer 
diagnosis and real-time monitoring immediately to 
comprehend the complex molecular data underlying 
the biological behaviors of tumors[5-7].
Engineered fluorescent Quantum Dots (QDs) show 
distinct optical as well as chemical characteristics 
and have demonstrated considerable promise as 
prospective platforms for biological applications[8]. 
The clinical utility of QD-based nanotechnology 
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in cancer diagnosis and detection including the 
principal difficulties in adapting QD-based detection 
techniques for clinical applications and encouraging 
future approaches are discussed in this review.

WORLDWIDE CANCER STATISTICS

Due to the aging and expanding global population, as 
well as the rising prevalence of cancer-causing activities, 
the global cancer burden continues to increase [9,10]. 
According to the World Cancer Report 2014, the global 
cancer burden rose to approximately 4 million new 
cases per year, with a projected increase to 22 million 
cases annually over the next 20 y.. Cancer deaths are 
expected to increase from 8.2 million to 13 million 
annually throughout this time frame. Despite recent 
advancements in early diagnosis and surgery-centered 
multidisciplinary treatments, the clinical outcome is 
still far from satisfactory. This is largely because of 
the complex cancer development process, which is a 
multifactor and multistep continuum, not just a disease 

of imbalance with a variety of molecular dysfunction 
and cell signalling disturbance, but a disease of 
imbalance with a variety of molecular dysfunction and 
cancer-favoring TME[11]. 

Breast Cancer (BC) is affecting about 2.1 million 
females annually. In 2018, 627 000 women died from 
BC, making up about 15 % of all women's cancer-related 
fatalities[12]. Typically, BC is classified according to how 
easy it can expand. Ductal carcinoma in situ begins in a 
milk duct but does not spread to the other breast tissue. 
Invasive or infiltrating types of BC i.e., invasive lobular 
carcinoma and invasive ductal carcinoma might spread 
to the breast tissue around them. The invasive ductal 
carcinoma constitutes up to 70 %-80 % of all BCs[13]. 
Inflammatory BC and triple-negative BC are also types 
of invasive BC. Inflammatory BC makes up 1 %-5 % of 
all BCs and is a rare kind of invasive BC. Fig. 1 shows 
various types as well as signs and symptoms of BC in 
females[14].

Fig. 1: Sign and symptoms and types of breast cancer
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BC is becoming more serious cause of death in women. 
In this regard, scientists are working at the cellular 
level using cutting-edge nanomaterials to create 
early diagnostic and therapy techniques for BC[15-18]. 
However, the requirement for its execution in clinical 
practice is impeccable[14]. 

QDs: EMERGING THERANOSTIC AGENTS

Due to their potential applications in cancer diagnosis 
and treatment, QDs are gaining attention[19]. 
Fluorescent probes made from semiconductor QDs 
have proven effective in the detection and treatment 
of cancer. They were a unique fluorophore that, due to 
their size, exceptional stability, lack of photobleaching 
and water solubility, may replace conventional organic 
dyes[20]. Successful advancements in the nanotechnology 
fields[21] and cancer nanomedicine have been developed 
as a result of formulation development, molecular 
biology and bioimaging[22,23]. 

QDs, luminous nanocrystals are utilized for both 
imaging and delivery of various bioactive in a 
controlled pattern. These fluorescent entities with 
integrated carrier and imaging functionalities enable 
the administration of diagnostic and therapeutic agents. 
QDs are a very hopeful technique for personalized 
medicine because of their high sensitivity, unique 
optical features and flexible surface chemistry[24]. 
Given the persistent nature of cancer, researchers face 
the major challenge of combining detection and therapy 
(theranostics) using Graphene Quantum Dots (GQDs). 
GQDs have rapidly gained prominence in the fields of 
materials science and biomedicine.[14]. It is mentioned 
that different surface alterations on QDs have a direct 
impact on their attributes, such as their toxicity and 
optical capabilities. These materials are employed in 
clinically targeted molecular treatment and imaging 
due to the positive outcomes[25].

Fabrication techniques of QDs:

The QDs can be prepared by bottom-up and top-down 
methods. The use of cheap, non-toxic raw materials, 
simple post-processing steps, straightforward 
operations, rapid reactions and renewable resources 
are only a few advantages of the environmentally 
friendly synthesis of QDs. Prospective uses for these 
nanomaterials in biomedical and clinical sciences 
include bioimaging, diagnostics, bioanalytical testing 
and biosensors[26].

All of the top-down and bottom-up approaches 
proposed for the synthesis of QDs may be divided into 

three categories i.e., physical, chemical and biological 
methods[27-29]. Depending on the production process, 
the size of QDs can range from a few nm to a few 
μm and via careful growth processes, the particle size 
distribution can be regulated within 2 %[30]. The methods 
used to create QDs vary depending on whether they are 
cadmium-based or cadmium-free and they range from 
conventional methods to cutting-edge methods.

Features of QDs:

Nanoscale semiconductor crystals known as QDs are 
intriguing materials in a variety of scientific fields, 
including biology[31,32]. QDs were initially identified 
by a Russian scientist named Alexei Ekimov in the 
1980s. These substances are made up of elements 
from groups II-VI or group III-V of the periodic table 
having physical dimensions less than the exciton's Bohr 
radius[33,34].  Their utility is getting better more than 20 y 
after they were first introduced.

QDs are exceptional prospects for in vitro and in vivo 
imaging because of their irreplaceable optical features. 
The inorganic core of the QDs is responsible for the 
optical and semiconductor capabilities. Before ligands 
are applied to the active core surface of a QD, it is 
frequently passivated by another inorganic shell. This 
enhances the optical characteristics of QDs because 
the shell's material has a wider band gap than the 
core, preventing electrons and holes from entering the 
shell[35]. Due to the confinement of electron-hole pairs 
(excitons) inside the nanocrystal grain boundaries, 
QDs exhibit distinctive visual features. QDs are ideal 
for a wide range of biomedical applications due to 
their unique photo-physical characteristics, which 
include broad absorption spectra and size-tunable 
narrow emission spectra, size- and composition-
tunable light emission, high fluorescence quantum 
yields, enormous absorption extinction coefficients, 
photo-chemical robustness, barrier properties to the 
photo bleach effect, large stokes shift and decreased 
fluorescence intermittency[36]. QDs, which are luminous 
semiconductor nanocrystals just a few nanometers in 
size, require further research to address several critical 
issues and better understand the risks associated with 
their development and use in cancer treatment[37-39].
[39]. Due to their low toxicity, biocompatibility, high 
quantum yields and versatility for various surface 
modifications, silicon QDs, non-blinking QDs and 
QDs with decreased size and regulated valence are 
currently particularly tempting for use in bioanalytical 
applications. The potential for multiplexed sensing 
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Fig. 2: QDs as cancer diagnostic agents

selection and sensitivities of the sensing performance[42]. 

BC:

The preferred diagnostic techniques for BC continue 
to be pathological laboratory tests like blood tests 
and biopsies, as well as biomedical diagnostic tests 
like computed tomography scans, positron emission 
tomography scans, ultrasound imaging, Magnetic 
Resonance Imaging (MRI) and mammography. Gene 
expression profiling is frequently employed as a 
diagnostic tool for the index of BC cell lines in place of 
immunohistochemical techniques[43,44]. 

In BC, QDs-based imaging investigations were carried 
out, including tissue imaging for assessing prognostic 
biomarkers and researching relationships between 
biomarkers, in vivo imaging for showing BC xenograft 
tumor, recognizing BC metastases and mapping the 
axillary lymphatic system[15,6]. Future applications 
of QDs-based imaging on clinical BC will mostly be 
focused on tissue investigation, particularly in BC 
molecular pathology and will include a variety of 
biomarkers[45].

employing QDs with different emission wavelengths 
to simultaneously detect a variety of biomarkers of 
illness is intriguing[40]. QDs have gotten a lot of interest 
since Ekimov and Efros classified them as a class of 
nanomaterials in the early 1980s. Although the earliest 
research focused on Cadmium Selenide (CdSe)-based 
nanocrystals, the field has subsequently expanded to 
encompass a variety of classes of nanoparticles with 
different chemical compositions for their core, shell 
and passivation[41].

QDs AS CANCER DIAGNOSTIC AGENTS

Due to the rising rates of cancer, cardiovascular disease, 
neurodegenerative disorders, autoimmune diseases 
and numerous infections worldwide, it is essential to 
develop strategies that can quickly and accurately detect 
the ultralow concentrations of relevant biomarkers, 
pathogens, toxins and pharmaceuticals in biological 
matrices. Many research efforts are now required to 
construct biosensors for their early identification and 
treatment using nanomaterials like QDs (fig. 2). These 
nanomaterials successfully enhance the repeatability, 
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The limitations of the many genomic expression 
approaches, including Oncotype Dx  test, MammaPrint® 
and BC Index (BCI), often include the requirement that 
BC has not yet spread to the lymph nodes for them to 
be effective. The inherited mutation of the BC gene is 
the genetic cause of BC (BRCA1 or BRCA2). About 25 
%-30 % of invasive BC patients have elevated levels 
of HER2, a 185 kDa protein also known as c-erbB-2 
or HER2/neu, which is strongly associated with more 
aggressive tumor biological characteristics[46]. The first 
to create QDs-based strategies for HER2 targeting in 
mice mammary tumor sections and human BC cells 
(SK-BR-3). Additionally, they created a technique 
to concurrently detect HER2 and human anti-nuclear 
antigens in a single BC cell using several QD colors. 
The usefulness of HER2 detection using QDs for 
BC has been supported by a couple of researches. 
HER2 over-expressing BC alive mice model was 
tracked using a single particle QD coupled with an 
anti-HER2 antibody, which effectively detected five 
delivery processes as follows. HER2 binding to the cell 
membrane, traveling from the cell membrane to the 
perinuclear region, occurring during extravasation, first 
inside the circulation within a blood vessel and in the 
perinuclear region[47]. 

25 distinct subtypes have been identified using 
information from QD-based quantitative spectral 
analysis of HER2, ER, and PR, including High 
Hormone Receptor (HHR), Low Hormone Receptor 
(LHR)-low HER2 total load (LTH2), LHR-high HER2 
total load (HTH2), negative hormone receptor (NHR)-
low HER2 total load (LTH2), and Negative Hormone 
Receptor (NHR)-HTH2[48,49].

Thomas Ashworth, an Austrian scientist, first identified 
Circulating Tumor Cells (CTCs) in patient cadavers in 
1869[50]. Since they are released from primary tumors 
into circulation to relocate to distant organs, CTCs 
play a crucial role in metastases and their number is 
highly correlated with clinical prognosis[51]. CTCs have 
not entered common clinical practice despite being 
discovered more than a century ago, mostly due to a lack 
of technology to isolate these incredibly uncommon 
cells. QDs have been created as a brand-new class of 
fluorescent probes with several distinctive features 
for therapeutic use. Numerous initiatives have been 
taken to increase target sensitivity and specificity[52-55]. 
It has been suggested that particular cancer cells can 
be captured and separated using built-in bifunctional 
nanospheres and further trifunctional nanospheres using 
both QDs and magnetic nanoparticles. Then, wheat 

germ agglutinin changed the trifunctional nanospheres 
to readily collect Prostate Cancer (PC) cells without 
harm. Later, these monoclonal antibody-based probes 
were used to target a variety of cancer cells, including 
leukemia cells and PC cells. For these two types of 
cancer cells, the capture efficiencies were 96 % and 97 
% respectively, after 25 min and using this approach, it 
was possible to quickly identify a small percentage of 
cancer cells (approximately 0.01 %) intermingled with 
a vast population of normal cells in culture[56].

Fluorescent labeling of aptamers is a useful technique 
for cell imaging and aptamer tracking. The aptamer 
SL2-B, which is targeted towards the Heparin-Binding 
Domain (HBD) of the VEGF165 protein, was coupled 
to QDs to produce the QD-SL2-B aptamer conjugate. 
The photobleaching impact of the QDs and the QD-
aptamer combination was evaluated before incubating 
the cells[57].

QDs are intravenously injected into orthotopic breast 
and pancreatic tumors in mice using the tumor-
penetrating iRGD peptide. The extravascular cancer 
cells and fibroblast still hold intact QDs after quenching 
the excess QDs, producing a tumor-specific signal[58]. 

PC:

Sensitive and multicolor imaging of cancer cells under 
in vivo settings using QDs probes coated with Prostate-
Specific Membrane Antigen (PSMA), a significant 
marker of PC, has been described[59]. Additionally, the 
same group investigated E-cadherin, high-molecular-
weight cytokeratin, p63 and -methyl acyl CoA 
racemase in situ detection to perform QD-based high-
throughput digital mapping of molecular, cellular and 
glandular changes on surgical PC specimens[60] which, 
particularly at complicated and dubious illness loci, 
is not accessible by Hematoxylin and Eosin (H&E) 
staining and Immunohistochemistry (IHC) techniques. 
Shi et al.[59] demonstrated the higher quality of 
multiplexed QDs for the detecting of prostate-specific 
membrane antigen in grown PC cells[61]. 

Ovarian cancer: 

The epithelial antigen CA125, a helpful tumor marker 
for ovarian cancer, may also be found using QDs in 
various specimen types, including fixed cells, tissue 
slices and xenograft pieces. The signals from the QDs 
probes have been more distinct and brighter than those 
from the traditional organic dye. The simultaneous 
detection of BRAF and BRCA Deoxyribonucleic 



www.ijpsonline.com

Indian Journal of Pharmaceutical Sciences1569 September-October 2024

of EGFR proteins could induce receptor activation 
to enable the precise detection of intracellular[72]. 
Multicolor QDs can also be utilized to diagnose 
Hodgkin's lymphoma[73]. Four protein indicators 
(Cluster of Differentiation (CD)15, CD30, CD45 
and CD Pax5) that were imaged multiplexed enabled 
the quick identification and discrimination of the 
uncommon Hodgkin's and Reed-Sternberg cells from 
encroaching immune cells[38,74,75].

QDs IN TREATMENT OF CANCERS

With QDs-based probes, in vitro and in vivo molecular 
imaging has seen significant developments. However, 
the intriguing physical and chemical properties 
of well-known QDs may also be related to their 
potentially harmful effects on living cells and tissues. 
Further research on some crucial issues is necessary 
to appropriately quantify the risks associated with the 
manufacturing and use of QDs in treating cancer[76]. The 
literature has examined the use of QDs for anticancer 
therapy using drug administration, gene delivery, and 
the recently established Photodynamic Therapy (PDT)
[10,24,77,78].

In combination with fluorescence imaging, modified 
QDs may effectively infiltrate cells and be employed 
as therapeutic agents to treat various cancers[79]. In the 
pharmaceutical business, QDs can be employed as tools 
for cell labeling, immunolabeling, medicine delivery 
and diagnostics[80]. Applications for silicon QD-based in 
vitro and in vivo imaging and drug delivery techniques 
are also discussed[81].

A QD aptamer-Doxorubicin (Dox) conjugate has 
been described by Bagalkot et al.[80] as a targeted 
cancer imaging, treatment and sensing system. This 
straightforward multipurpose nanoparticle technology 
can both give Dox to the desired PC cells and detect 
Dox delivery by turning on the fluorescence of QD[82].

Moving nano-diagnostic technologies from the lab to 
society scales will require further work. Due to their 
smaller size (10-150 nm), GQDs exhibit selective 
extravasation capacity from the circulation into tumor 
tissue in the event of passive targeting of tumors. They 
may be able to positively accumulate in tumor tissue 
due to Nanoparticles' (NPs') increased permeability and 
retention effective response[83].  Many researchers are 
working to make further progress in the areas of reducing 
the potential toxicity, improving biocompatibility and 
improving the capacity of GQDs to load drugs. Recent 
studies have shown the effectiveness of combining 

Acid (DNA) using a nano-on-micro technology-based 
multiplexed DNA sensor was also reported by Ai et al. 
[60]. This method has significant promise for the early 
identification of diseases such as BC, ovarian cancer 
and papillary thyroid carcinoma[62-64].

Pancreatic cancer: 

Bombesin (BN) receptors in the healthy pancreas, which 
are absent in pancreatic cancer, have been designed as a 
target by Montet et al.[63] instead of targeting upregulated 
or overexpressed molecules in cancer cells[65]. The 
BN-Cy5.5 nanoparticle offers a potential method for 
imaging pancreatic cancer by reducing the T2 signal of 
a healthy pancreas and improving the capacity to see 
the tumor in a model of pancreatic cancer using MRI. 
Multifunctional QDs have become efficient materials 
for simultaneous cancer diagnostics, targeting and 
therapy. The main barrier to clinical translation for QDs 
is still toxicology[37].

Liver cancer: 

To target liver tumors, Yu et al.[64] created customized 
QDs-anti-Alpha-Fetoprotein (AFP) probes. As these 
probes gathered inside the tumor, they fluoresced, 
allowing for active tumor-targeted and spectroscopic 
hepatoma imaging[66]. Additionally, the QDs-based 
pictures could demonstrate lung metastasis, recurrence 
and subcutaneous tumor progression.

Lung cancer: 

A method for quantifying protein expression, including 
Epidermal Growth Factor Receptor (EGFR), pan-
cytokeratin and E-cadherin, of lung cancer tissues from 
xenograft models, was developed and validated by 
Ghazani et al.[65]. This method provided an automated 
mathematical tool to remove auto-fluorescence, 
normalize tumor protein normalized to cellular content 
and produce a thorough profile of tumor-derived 
antigen on a tissue microarray[67]. When compared to 
conventional IHC, QDs-IHC had a greater sensitivity 
for detecting caveolin-1 and Proliferating Cell Nuclear 
Antigen (PCNA) in lung cancer[37,68-70].

Other solid tumors: 

Recent developments in the conjugation of QDs and 
the extracellular domain of EGFR proteins[71] allow 
for the rapid identification of tumor type, grade and 
chemoresistance by biological markers characteristics 
and enable nanoparticle-based, mechanistic studies 
of the role of activated EGFR in the growth and 
invasiveness of brain tumors as extracellular domain 
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Cytotoxicity:

Numerous QDs have some level of cytotoxicity. The 
size, capping material, dosage, surface chemistry, 
coating bioactivity and QD exposure pathway are 
the key determinants of QD cytotoxicity. Target cells 
and tissues may experience a harmful effect from the 
remaining organic compounds[88]. As an illustration, 
Wistar rats were exposed to 0.52 mg cd/m3 for 5 d (6 h/d) 
by nasal delivery. After 3 d of exposure, Cd-based QDs 
were discovered upon a histological investigation of 
the clinical variables in blood, Bronchoalveolar Lavage 
(BAL) fluid and lung tissue. Without harming the central 
nervous system, the Cd-based QDs were able to trigger 
local neutrophil inflammation in the lungs[89]. Due to 
the protective effect of the Zinc Sulfide shell preventing 
the escape of Cd ions from the inner side, a significant 
buildup of QDs was seen in the spleen. In Drosophila 
melanogaster, the long-term toxicity of CdSe-ZnS QDs 
with surface coating and the genotoxic effects of QDs 
in vivo were investigated. Additionally, the toxicity of 
QDs is examined, along with modifications for toxicity 
reduction. Real publications and patents are used to 
analyze how QDs are used in biomedicine[90].

The cytotoxicity of QDs has been attributed to several 
different causes. These mechanisms, which have been 
previously described, can be summed up as free Cd 
desorption (degradation of the core of QDs); production 
of free radicals and interaction of QDs with intracellular 
components. Since the inner metal core of some types 
of QDs is made of hazardous metal, (such as Cadmium 
(Cd), Arsenic (As), Selenium (Se), Tellurium (Te) and 
Lead (Pb)) the stability of the outer surface layers of 
QDs directly affects their biocompatibility[91].

In vivo toxicity:

The toxicity caused by the leaking of heavy metal ions 
like Cd, Pb or As from contained QDs (II-IV, IV-VI, 
or III-V groups) into biological systems is one of the 
key obstacles to the widespread use of QDs for in vivo 
investigations. If the QD surfaces are not adequately 
shielded by ligands or covered by shells, the issue 
becomes more challenging. Until recently, several 
in vitro and in vivo research have been conducted to 
examine the cell- and tissue-toxicity of QDs[92,93], as was 
already established, research has revealed that QDs are 
not necessarily safe[94-98] and when utilized as imaging 
and therapeutic agents, they have various impacts on 
biological systems at the cellular, subcellular, and 
molecular levels[99]. QDs may negatively impact cell 
viability, growth and proliferation in addition to causing 

GQDs with rare-earth up-converting NPs for synergistic 
PDT/Photothermal (PTT) and bioimaging applications 
in cancer therapy to solve the aforementioned 
issues[84]. It is reasonable to assume that GQDs-based 
nanoplatforms can enhance theranostic techniques in 
practical and biocompatible ways given the wealth of 
research reports on GQDs. However, there is always 
a silver line that must be crossed before an innovation 
is accepted and that is the point at which the newly 
developed materials become well-known or are used in 
common biomedical applications.

CHALLENGES IN QDs-BASED DETECTION 
TECHNIQUES

Nanotechnology holds enormous promise for 
both fundamental and therapeutic cancer research. 
Particularly with conjugated QDs in targeting metastasis 
and in quantitative detection of molecular targets, 
unique surface and size features of QDs offer significant 
potential in enhancing the clinical application and 
excite enthusiasm for breaking past, present technical 
limits. Due to the lack of clinical experience with 
their use, innovative QDs-based technologies have 
prompted concerns about biosafety, repeatability and 
dependability when compared to current conventional 
technologies. In the case of QDs, several surface 
modifications are said to affect properties including 
toxicity and optical properties directly. Due to the 
promising outcomes, these materials are employed in 
clinics for specialized molecular therapy and imaging. 
Several issues must be resolved before the widespread 
use of QDs in a therapeutic setting. Proposals are 
suggested and investigated with respect to the existing 
obstacle facing QDs to propose an appropriate approach 
for the therapeutic application of these materials[25].

BIOSAFETY ISSUES OF QDs

Before incorporating QDs into clinical use, we 
must first overcome the obstacle of reducing the 
QDs' cytotoxicity. QDs include potentially harmful 
metal atoms and because of colloidal effects and 
photon-induced free radical production, they may 
unexpectedly cause cytotoxicity[85]. There aren't many 
papers or sources of information on the cytotoxicity 
or biosafety of QDs, which is partially related to the 
novelty of nanotechnology[86]. These issues might not 
have a significant impact on the advancement of in 
vitro applications, but they pose significant obstacles 
to in vivo cancer imaging in humans. Although more 
attention has been paid to how QDs affect human health 
and the environment[87].
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cell-based investigations of QDs offer some important 
advantages over conventional diagnostic approaches, 
there are still major obstacles to overcome before 
these approaches can be effectively applied in clinical 
settings. The majority of QD research relies on in vitro 
testing. To realize their potential and determine their 
safety and effectiveness profile, these investigations 
should be continued in animal models and clinical 
trials. To speed up the application of QDs in cancer 
detection and diagnosis in clinically relevant contexts, 
interdisciplinary partnerships combining oncologists, 
bioinformatics scientists, chemists, physicists, 
biomedical engineers, biologists, and pathologists are 
urgently needed.

Conflict of interest:

The authors declared no conflict of interests.

REFERENCES
1. Islami F, Miller KD, Siegel RL, Zheng Z, Zhao J, Han 

X, et al. National and state estimates of lost earnings 
from cancer deaths in the United States. JAMA Oncol 
2019;5(9):e191460. 

2. Hulvat MC. Cancer incidence and trends. Surg Clin North 
Am 2020;100(3):469-81. 

3. World Health Organization. WHO report on cancer: Setting 
priorities, investing wisely and providing care for all. World 
Health Organization; 2020. 

4. World Health Organization. Don’t let tobacco take your 
breath away: Choose health, not tobacco: World tobacco 
day; 2019. 

5. El-Tanani M, Nsairat H, Mishra V, Mishra Y, Aljabali AA, 
Serrano-Aroca Á, et al. Ran GTPase and its importance in 
cellular signaling and malignant phenotype. Int J Mol Sci 
2023;24(4):3065. 

6. El-Tanani M, Al Khatib AO, Al-Najjar BO, Shakya AK, 
El-Tanani Y, Lee YF, et al. Cellular and molecular basis 
of therapeutic approaches to breast cancer. Cell Signal 
2023;101:110492. 

7. El-Tanani M, Platt-Higgins A, Lee YF, Al Khatib AO, 
Haggag Y, Sutherland M, et al. Matrix metalloproteinase 2 is 
a target of the RAN-GTP pathway and mediates migration, 
invasion and metastasis in human breast cancer. Life Sci 
2022;310:121046. 

8. Fang M, Chen M, Liu L, Li Y. Applications of quantum 
dots in cancer detection and diagnosis: A review. J Biomed 
Nanotechnol 2017;13(1):1-6. 

9. Torre LA, Bray F, Siegel RL, Ferlay J, Lortet‐Tieulent J, 
Jemal A. Global cancer statistics, 2012. CA Cancer J Clin 
2015;65(2):87-108. 

10. Hanahan D, Weinberg RA. Hallmarks of cancer: The next 
generation. Cell 2011;144(5):646-74. 

11. Ferlay J, Ervik M, Lam F, Colombet M, Mery L, Piñeros 
M, et al. Global cancer observatory. Cancer Today 
2018;23(7):323-6. 

12. Wenzel C, Bartsch R, Hussian D, Pluschnig U, Altorjai G, 
Zielinski CC, et al. Invasive ductal carcinoma and invasive 
lobular carcinoma of breast differ in response following 

various DNA damages[100].
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structural components into the biological environment. 
Their poor solubility is a further constraint. Today, 
surface alterations have been suggested to solve the QD 
problems outlined above. Several strategies have been 
put forth in this area, including surface ligand exchange 
and covering QDs with biocompatible compounds 
(e.g., polymer layer)[101,102].

CONCLUSION

To improve the properties of QDs for particular 
applications, several synthesis methods and tactics 
have been developed during the past 10 y. Recently, 
this family of materials has demonstrated considerable 
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