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Ray et al.: Role of Nanostructured Lipid Carriers in Treating Ovarian Neoplasm

Nanostructured lipid carriers are lipid-based nanoparticles that consist of a solid-lipid matrix and 
a liquid-lipid component, by enhancing drugs solubility and stability it improves bioavailability and 
efficacy. Nanostructured lipid carriers have the skill to act as carriers loaded with various drugs, 
including hydrophilic and hydrophobic molecules and can be functionalized with targeting ligands or 
imaging agents for the purpose of targeted drug delivery and imaging. Ovarian cancer, which begins 
in the ovaries, is one of the most lethal forms of gynecological cancer, it also shows a very less survival 
rate in women due to its asymptomatic nature, late diagnosis and high recurrence rate. Different genetic 
variations and pathways such as tumor protein p53 mutation in high-grade serous tumors, Kirsten rat 
sarcoma viral oncogene homolog mutation in mucinous tumors and clear cells are used to distinguish 
between various types of this disease. The term “Dual targeting” describes the therapeutic strategy in 
which two separate molecules or pathways are targeted at once to amplify the therapeutic effect, it can 
be useful in overcoming drug resistance as it concurrently targets two independent pathways and lowers 
the risk that cancer cells will develop resistance to individual therapies. This article reviews the uses of 
nanostructured lipid carriers in the treatment of ovarian cancer.
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Ovarian carcinoma is a lethal cancer that affects the 
female ovary. In the past few years, there have been 
over 10 000 instances of a fatal disease affecting the 
female population, which has resulted in the death 
of many women in worldwide. Chemotherapy is a 
relatively new method of curing cancer initially; it 
was only effective for early-stage ovarian cancer. 
A significant number of malignancies affecting the 
ovaries are detected at an advanced stage, primarily 
due to the inconspicuous development of tumors, 
delayed manifestation of symptoms and insufficient 
screening techniques. Cisplatin and paclitaxel are 
combined for the treatment of ovarian cancer[1]. 
However traditional treatment approaches have 
limitations including disease relapse, decreased 
effectiveness and potential toxic side effects[2]. 
Chemotherapy for ovarian carcinoma is related to 
several side effects such as nausea, hair loss and 
decreased blood cells count[3].
Scientists have developed various types of 

nanoparticles, including nanoparticles made of 
metals like silver and gold[4]. Nanoparticles are 
composed of organic materials such as lipids and 
polymers. Nanostructured Lipid Carriers (NLCs) 
consist of solid-lipid, liquid-lipids and surfactants 
or a combination of surfactant dispersion in water. 
Nano-lipid carriers have shown remarkable potential 
in drug loading and targeting[5]. NLCs possess several 
benefits to achieve higher drug loads and controlled 
release for both hydrophilic and hydrophobic 
therapeutic agents, leading to increased physical 
stability[6]. Attaching ligands allows passive and 
active targeting. Fig. 1 illustrates all NLCs materials 
and components in the marketed products and 
approved by regulatory agencies[7].
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OVARIAN CANCER SUBTYPE

Cancer is the most common classification for epithelial 
tumours. Non-epithelial cancer includes germ cell 
cancer, stromal cell cancer and rare small cell carcinoma. 
Fig. 2 illustrates various ovarian cancer subtypes.

EPITHELIAL TISSUE CANCER THAT 
OCCURS IN OVARIES

Malignancies that originate from epithelial cells account 
for over 90 % of cases in the ovary. Postmenopausal 
epithelial ovarian cancer is caused by aging.

High-Grade Serous Carcinoma (HGSC):

HGSC develops from cells that line the ovary, fallopian 
tube or peritoneum. Most epithelial ovarian tumors are 
lethal and aggressive[8]. Ovarian Surface Epithelium 
(OSE) is a cellular layer that lines the outer surface 
of the female reproductive organ. It develops from 
the embryonic tissue that lines the body cavity, called 
the coelomic epithelium. During ovulation, a mature 
embryo is released from a follicle in the ovary, the OSE 
may be compromised at the site of the rupture[9]. Some 
cases of OSE damage, invagination may occur during 
follicle recovery, leading to the formation of cysts 
within cortex of the affected tissues[10]. The Mullerian 
ducts, important to the maturation of the specific 
reproductive organs, arise from the invagination of 
the coelomic epithelium in the upper lateral portion of 
the gonadal ridge[11]. The Mullerian duct epithelium, 
ovarian mesothelium and peritoneal mesothelium 
originate from the same embryonic tissue layer[12]. 
OSE can undergo metaplasia, a process in which one 

tissue type is replaced by another[13]. When metaplastic 
potential coupled with genetic abnormalities, results 
in the formation of malignancy that resembles the 
typical epithelium of the fallopian tubes, uterus and 
endocervix[14,15].

Low-Grade Serous Carcinoma (LGSC):

LGSC is a less lethal form of the disease when 
compared to HGSC. It is a rare form of cancer which is 
mainly diagnosed in middle aged women[16]. A common 
approach to treat LGSC involves a combination of 
platinum and taxane-based chemotherapy, which is 
like treatment for HGSC. Hormonal therapy is another 
treatment option that could be investigated for those 
who have a disease that has not been eradicated by 
chemotherapy[17,18]. LGSC has symptoms with ovarian 
cancer and ultrasonography is a vital tool for the early 
evaluation of an adnexal tumor. The malignancy index 
is an important instrument that is utilized in ultrasound 
imaging[19]. Its primary purpose is to differentiate 
between benign and malignant adnexal (ovarian) lesions, 
this method considers the results of an ultrasound, 
the patient's menstrual status and the concentration 
of Cancer Antigen-125 (CA-125) in their blood[20,21]. 
Invasive LGSCs may show multicellular cysts with 
solid components or papillary projections, often 
accompanied by calcification[22], while noninvasive 
LGSCs often show multilocular cystic lesions with 
papillary projections. In contrast, high-grade serous 
ovarian tumors typically take the form of non-papillary 
solid masses that also feature scattered areas of cystic 
transformation, hemorrhage or necrosis[23,24].

Fig. 1: NLC incorporates two cancer-targeting drugs
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Mucinous Ovarian Cancer (MOC):

MOC is a rare form of cancer in which the use of tobacco 
is considered a primary risk factor for developing 
MOC[25]. MOCs are characterized by the progression 
towards cancer that is indicated by their heterogeneous 
nature, which contains benign, borderline and carcinoma 
components[26]. Around 40 %-50 % of cases of Kirsten 
Rat Sarcoma viral oncogene homologue (KRAS) 
mutation are found in MOCs, while 25 or more than 25 
cases are found in tumor protein p53 mutation. KRAS 
mutation is thought to be an early event detectable in 
the surrounding benign and borderline lesions[27,28].

Clear Cell Carcinoma (CCT):

CCT is depicted by the presence of hobnail-like cells 
with abundant cytoplasm containing glycogen[29]. CCT 
can manifest in several distinctive morphological 
forms, including papillary, tubulocystic, solid and 
mixed patterns[30]. In most cases, CCT will have a 
negative result for the progesterone receptor and Wilms 
tumor suppressor[31]. However, one study found that 
CCT tissues were more likely to have methylation of 
the Wilms' Tumor 1 (WTI) gene and WTI-antisense 
promoter than serous adenocarcinoma tissues[32]. It has 
been demonstrated that Hepatocyte Nuclear Factor-1 
Beta (HNF-1β) has anti-apoptotic effects in clear 
cell carcinoma and this protein is regarded as a valid 
diagnostic for clear cell tumors[33].

Research into the molecular biology and genetics of clear 
cell carcinoma has shown that it often lacks mutations in 

P53, Breast Cancer gene 1 (BRCA1) and BRCA2 genes, 
but shows mutations in AT-Rich Interaction Domain 1A 
(ARID1A) and Phosphatidylinositol-4,5-bisphosphate 
3-Kinase Catalytic subunit Alpha (PIK3CA) genes[34]. 
PIK3CA mutations are frequently found in CCT which 
leads to the activation of the Phosphatidylinositol 
3-Kinase (P13K)-protein kinase B (AKT)-mammalian 
Target of Rapamycin (mTOR) pathways. It has been 
hypothesized that an increase in the activity of this 
pathway could be one of the factors that lead to the 
development of CCT. As a result, CCT has a unique 
molecular profile with common PIK3CA mutations and 
abnormal activation of the mTOR pathway[35,36].

Small Cell Carcinoma of the Ovary (SCCO):

SCCO is an exceedingly rare and aggressive subtype of 
ovarian cancer that mostly affects young women, often 
those under the age of 40 y[37]. It is characterized by small 
round blue cells that resemble those seen in small-cell 
lung carcinoma. It is classified into two types; Small cell 
Cancer of Ovary Hypercalcemia Type (SCOHT) and 
Small cell Cancer of Ovary Pulmonary Type (SCOPT). 
SCOHT tends to strike younger women (with an average 
onset age of 22 y), while SCOPT tends to strike older 
women (around 51). Both are extremely aggressive 
cancers, but they have different chemo and irradiation 
responses. Surgery and platinum-based chemotherapy 
are the main treatments for SCOHT; however, the 
optimum approach is unknown[20]. The combination of 
high-dose chemotherapy and stem cell transplantation 
has been proposed as a treatment for SCOHT. Many 

Fig. 2: Types of ovarian cancer
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protein kinase (ERK)/c-Jun N-terminal kinase (JNK) 
pathway[42].

Yolk sac tumors are characterized by aneuploidy and 
frequently display gains in chromosome 12P, which 
are detected in approximately 60 %-70 % of ovarian 
cancer[43]. In contrast to other types of ovarian tumors, 
yolk sac tumors do not show any recurrent copy 
number variations. In addition, it has been discovered 
that yolk sac tumors typically demonstrate activation 
of the P13K/AKT/mTOR signalling pathway. This is 
a phenomenon that is also observed in certain types of 
cancer. Activation of the Transforming Growth Factor-
beta (TGF-β)/Bone Morphogenic Proteins (BMP) and 
Wingless-Int (Wnt)/beta-catenin signalling pathways 
were not observed in dysgerminomas but was shown in 
tumours of the yolk sac.

Ovarian Sex Chord-Stromal Tumor (SCSTs):

Tumors originating in the specialized cells that sustain 
and regulate egg formation, known as ovarian SCSTs[44] 
is originated from Granulosa Cell Tumors (GCT), 
theca cells, fibroma cells and Sertoli-Leydig cells[43]. 
The onset of ovarian SCSTs has been associated 
with a number of inherited conditions, including 
DICER1-pleuropulmonary blastoma familial tumor 
predisposition syndrome, ollier disease and Maffucci 
syndrome. Peutz-Jeghers syndrome (PJS) is an 
autosomal dominant disease caused by mutations in the 
serine/threonine kinase 11 (STK11)/Liver Kinase B1 
(LKB1) gene located on chromosome 19p13. Ovarian 
SCSTs linked with PJS have histological characteristics 
in-between those of Germ Cell Tumors (GCTs) and 
Sertoli cell tumors, Adenosine Monophosphate (AMP) 
kinase activating gene STK11/LKB1 is well-known 
as a tumor suppressor gene[45,46]. Enchondromas are 
benign cartilaginous tumors that are seen in patients 
with rare genetic illnesses including ollier disease 
and Maffucci syndrome. Multiple enchondromas 
at different sites characterize ollier disease, while 
multiple enchondromas and soft tissue hemangiomas 
characterize Maffucci syndrome. Mutations in the IDH 
gene, which produces isocitrate dehydrogenase are 
linked to enchondromas in ollier disease and Maffucci 
syndrome. In this study, it is shown that hereditary 
syndrome such as PJS, ollier disease and Maffucci 
syndrome and DICER1 syndrome are associated with 
an increased risk of ovarian SCSTs and may require 
specialized management and surveillance[47].
Granulosa Cell Carcinoma (GCC):

Granulosa cell tumors are rare and indolent neoplasms. 

patients with SCOHT were found to have recurrent 
inactivating mutations in the SWItch/Sucrose Non-
Fermentable (SWI/SNF) related, Matrix associated, 
Actin dependent Regulator of Chromatin, subfamily 
A, member 4 (SMARCA4) gene[38]. Researchers have 
identified the gene as the one that encodes the SWI/
SNF chromatin remodelling complex's adenosine 
triphosphatase. A high frequency of mutations and a 
decrease of protein expression were detected in patients 
who were afflicted with the condition. These findings 
provide useful insights into the molecular pathogenesis 
of SCOHT and have the potential to have ramifications 
to examine the unusual subtype of ovarian cancer[39]. 
According to a recent study Enhancer of Zeste Homolog 
2 (EZH2), which is a histone methyltransferase is found 
to have high levels of expression in SCOHT, as a result 
of the loss of SMARCA4. Based on research it appears 
that a therapeutic approach that targets EZH2 could be 
a promising technique for treating SCOHT, inhibition 
of EZH2 achieved through the use of pharmacological 
agents will be successful in treating this aggressive kind 
of ovarian cancer. However pulmonary type remains 
understudied due to its scarcity and further research 
is necessary to gain a better understanding of genetics 
and epigenetic alternations, this could potentially lead 
to the development of new targeted therapies[40].

Ovarian germ cell:

Eggs or ova are produced by specialised cells in the 
female body that are called ovarian germ cells. During 
the process of foetal development, these cells migrate 
to the developing ovary after having originated in 
primordial germ cells[25]. Different study is conducted 
on ovarian germ cell tumors, with dysgerminomas 
being the most common subtype, followed by 
immature teratomas, mature teratomas with malignant 
degeneration and mixed germ cell tumors. The KIT 
proto-oncogene, receptor tyrosine kinase gene, which is 
mutated in dysgerminomas, is involved in the activation 
of several intracellular signalling pathways[41]. In a 
study conducted by Fujiwara et al., a mutation in 
the KRAS gene was found in six cases of malignant 
ovarian germ cell tumors. These patients included two 
dysgerminomas and four immature teratomas[38]. Gain 
of 12P and isochromosome 12P are two examples of 
chromosome 12 abnormalities that have been linked to 
dysgerminomas. The KRAS gene has been linked to 
several different types of cancer due to its function in the 
Rat sarcoma protein (RAS)-Mitogen-activated protein 
kinase kinase kinase (RAF)- Mitogen-activated protein 
kinase kinase (MEK)-Extracellular signal regulated 
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CANCER-TARGETED DRUG DELIVERY 
USING CUBOSOMES

The clinical application of anticancer drugs is limited due 
to non-specific distribution in living organisms which 
leads to adverse effects in normal tissue. Therefore, it 
is important to create drug delivery systems that can 
specifically target cancer cells while reducing collateral 
damage to healthy tissues, which led to the creation 
of highly efficient and precise drug delivery methods, 
such as cubosomes as it can offer biocompatibility, 
minimal toxicity, shows significant potential as drug 
delivery mechanism for cancer therapy[60]. To overcome 
different drug carriers have been developed to deliver 
agents at specific sites. Nanoparticles that concentrate 
in the affected tissue are used to deliver drugs or other 
therapeutic agents directly to the site of the disease, it 
offers several advantages such as enhanced efficacy, 
reduced toxicity and improved pharmacokinetics[61].

CUBOSOME-LOADED WITH ANTICANCER 
DRUGS

Paclitaxel:

Paclitaxel is used in combination with platinum-based 
agents as a first-line chemotherapeutic drug[62]. PTX 
binds to β-tubulin, blocking the mitotic spindle and 
stopping the cell cycle at the metaphase-anaphase 
junction[62]. This process enhances the polymerization of 
microtubules, leading to the inhibition of the cell cycle. 
PTX conjugation to β-tubulins stabilizes microtubules, 
preventing their dynamic rearrangement to maintain 
interphase and mitotic functions that produce unusual 
bundles throughout the cell cycle[63], this slows cancer 
cell growth. PTX-based NSCLC and other cancer 
therapies are being studied to improve efficacy and 
safety[64].

In this study, paclitaxel showed extensive antitumor 
effectiveness in vivo mice tumor screening[65,66]. 
Although clinical trial shows the result of paclitaxel 
on different cancer mushroomed, as the source being 
extremely slow-growing Pacific yew many of them 
were not able to begin as planned[67]. Researchers soon 
released that more quantity of dried bark is required for 
the production of paclitaxel extract[68]. The discovery 
of platinum cytotoxic properties led to increased 
responsiveness to paclitaxel therapy in patients with 
ovarian cancers that were resistant to platinum. Another 
concern was that paclitaxel wasn't soluble in water, but 
this was fixed by making the drug soluble in ethanol 
and cremophor E[69,70].

Randomized clinical trials have never been used to 
identify the most effective treatment for these tumors. 
It is mainly diagnosed at a median age of around 50-
60 y[48], with clinical symptoms that may include 
abdominal pain, distention, the presence of a palpable 
mass and mental disturbance. Based on clinical 
and histological characteristics it is of two types of 
juvenile and adult type[49]. Juvenile type granulosa cell 
tumors were found in prepubertal girls and younger 
women. Adult form of GCC is mostly found in older 
age women and distinguish by the presence of small, 
uniform cells arranged in cords or nests surrounded by 
a fibrous stroma[50,51]. The cells frequently possess small 
nuclei and indistinct nucleoli and they may take on the 
appearance of "coffee beans." For treatment of juvenile 
and adult GCC, surgery is the best option to remove the 
tumor while preserving fertility. Generally, progenesis 
of juvenile and adult GCC shows a high rate of cure in 
the early stage of the disease[52].

Sertoli-Leydig Cell (SLCTs):

SLCTs also known as androblastomas contain a very 
small percentage of ovarian tumors[53]. It is assigned 
into three types based on their degree of differentiation, 
which is directly linked to the patient’s prognosis they 
are differentiated, intermediately differentiated[54] and 
poorly differentiated. These tumors are mainly found 
in middle-aged women and manifest themselves in a 
unilateral location[55].

CUBOSOMAL LOADED DRUG

Cubosomes are a form of nanoparticle that has a 
unique structure consisting of a lipid bilayer enclosing 
an internal cubic lattice[56]. Because of their structure, 
they are perfect for the delivery of drugs, as they can 
encapsulate both pharmaceuticals that are hydrophilic 
and those that are hydrophobic. In order for cubosomes 
to serve their purpose as an efficient drug delivery 
system, they must be pre-loaded with enough quantity of 
bioactive, peptides, biologics or small-molecule drugs. 
Loading cargo onto cubosomes can be done three ways; 
within the lipid bilayer, on the lipid membrane and in 
the cubic phase's water channels[57]. Various methods 
are used for loading drugs into cubosomes such as the 
addition of a therapeutic agent to the molten lipid or co-
lyophilizing it with the lipid film before dispersion[58]. 
Another method involves loading drug moieties onto 
preformed cubosomes using the incubation technique 
and it enables efficient loading of drugs onto the 
cubosomes, providing potential benefits for targeted 
drug delivery[59].
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cancer cell growth could be inhibited by ICA-loaded 
cubosomes due to their increased drug solubility and 
cellular permeability[84].

DUAL TARGETING STRATEGY FOR 
CANCER TREATMENT

The dual targeting strategy is an approach that tries 
to improve the selectivity and specificity of cancer 
treatment by focusing on various pathways and 
substances that are essential to the survival and 
proliferation of cancer cells[85,86]. It is a technique that 
can also be applied to drug delivery systems, may 
include delivering numerous drugs at once to the site 
of the tumor in an effort to improve the effectiveness of 
the treatment[87].

Bispecific antibodies have shown great promise as a 
dual-targeting strategy for cancer therapy. Based on the 
mechanism of action it is divided into two types. 

Direct targeting of particular components, such as cell 
surface receptors or soluble substances, is included in 
the first category of treatment approaches. This can 
be done by binding and neutralizing two ligands or 
receptors, neutralizing a receptor and a ligand, activating 
two receptors, activating one receptor and neutralizing 
another receptor, or activating a soluble factor.

Bispecific antibodies are used in the second type of 
dual targeting method, which involves delivering a 
therapeutically active component, such as effector 
molecules or effector cells, to the target region. In order 
to increase the effectiveness of a single molecule's 
treatment, this strategy incorporates both direct and 
indirect activities inside the same molecule. These dual 
targeting techniques have the possibilities to increase 
the specificity and efficacy of therapeutic interventions 
in a variety of illness conditions by focusing on the 
unique qualities of bispecific antibodies, such as their 
ability to simultaneously bind to several targets[88].

Dual receptor targeting as a potential cancer 
treatment:

Growth signals transmitted by receptors that are 
increased or amplified in tumor cells are essential for 
tumor formation and progression[89,90]. The Epidermal 
Growth Factor (EGF) receptor family (EGFR, Human 
Epidermal growth factor Receptor 2 (HER2), HER3 
and HER4) and Insulin-like Growth Factor-1 Receptor 
(IGF-1R) exhibit this phenomenon. Cell proliferation, 
survival, differentiation and migration are all controlled 
by these receptors and their downstream signaling 

Cisplatin:

The platinum-based chemotherapy drug cisplatin is 
widely used to treat ovarian cancer[71]. It is an alkyl 
agent which produces an immensely reactive moiety 
that facilitates the cross-linking of Deoxyribonucleic 
Acid (DNA)[72], forming DNA adducts which in turn 
hindered the repair of DNA which subsequently leads 
to DNA damage. Ovarian cancer patients who undergo 
therapy with cisplatin frequently experience recurrence 
and develop resistance to chemotherapy[73,74].

Cisplatin can develop resistance in cancer cells 
through different changes[75]. Drug transfer decreases 
intracellular cisplatin accumulation, increased 
quantities of intracellular scavengers such as glutathione 
and/or metallothionein, leading to more efficient drug 
detoxification variations in the mechanisms leading to 
apoptosis[64,76].

Icariin (ICA):

Cubosomes with glyceryl monooleate and poloxamer 
407 as a stabilizer was used to transport icariin[77]. 
The use of cubosomes loaded with ICA for the cure 
of ovarian cancer was investigated[78]. The cubosome 
formulation was optimized using a Box-Behnken 
statistical approach[79]. Formulations' drug entrapment 
efficiencies varied with different particle sizes. ICA-
Cubs, which were optimised ICA-loaded cubosomes, 
showed increased cytotoxicity and apoptotic potential 
in tests against ovarian cancer cell lines (SKOV-3 and 
Caov 3)[80]. Optimised ICA-Cubs were found to be 
ineffective against EA.hy926 endothelial cells. Analysis 
of cell cycle arrest using optimised cubs against ICA-
raw showed a promising function for optimised cubs in 
the pre-G1 and G2/M phases. This higher production 
of reactive oxygen species may be responsible for the 
heightened apoptotic potential of the ICA. Therefore, it 
is hypothesised that ICA-Cubs treatment has a stronger 
capacity to lower tumor necrosis factor production 
within the cytosol of the SKOV-3 cells, which could 
restrict angiogenesis in the tumour microenvironment 
and cancer cell growth, proliferation, invasion and 
metastasis[81]. Caspase-3 production is greatly increased 
by the formulation technique in ICA-Cubs compared 
to ICA-raw[82]. This may be due to the increased 
internalization of ICA in the novel formulation, as 
the quantity of caspase-3 in ovarian cancer cells was 
unaffected by the placebo formulation[83]. This role of 
caspase-3 in the therapeutic group may be connected 
with p53 expression, which in turn may affect the 
development and spread of cancer cells. Ovarian 
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been developed for therapy of cancer, other additional 
diseases that are infectious and allergic. Preclinical 
studies and laboratory experiments are focusing 
a lot of attention on cubosomes because of their 
promising properties as vehicles for efficient drug 
delivery. However, many obstacles and constraints 
must overcome before these cubosomes may be 
successfully implemented in therapeutic surroundings. 
The cubosomal nanoparticles have made significant 
progress in research and development because to the 
accumulation of a library of possible stabilizers that has 
been investigated for their ability to selectively target 
different cancer cells.
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on a tumor cell would increase the antiproliferative 
effect and preventing developing the resistance[95,96].

Dual-ligand cancer treatment:

Neovascularization, which is stimulated by vascular 
growth factors, is necessary for the progression of 
solid tumors[97]. These angiogenic agents stimulate 
endothelial cell proliferation, migration, extracellular 
matrix remodeling, vascular permeability and blood 
vessel survival. In addition to Vascular Endothelial 
Growth Factor A (VEGF-A), Angiopoietin-2 and 
osteopontin are two proteins that have been found to 
play a function in angiogenesis. Anti-VEGF antibodies 
like bevacizumab are used to treat metastatic colorectal 
cancer and a number of other solid tumors because of 
their ability to block the growth of new blood vessels. 
There may be a way to increase anti-angiogenic activity 
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designed to have increased anti-angiogenic effects. The 
potential therapeutic benefits of the bispecific DVD-Ig 
were evaluated and found to be promising, as it inhibited 
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in the ovary. After comparing the binding behavior 
of both antibodies, VEGF/OPN-BsAb was selected 
for further analysis, in vitro, the bispecific antibody 
inhibited endothelial cell proliferation and reduced 
micro-vessel density in a hepatocellular carcinoma 
model (HCCLM3)VEGF/OPN-BsAb also inhibited 
primary tumor growth of the primary tumor, but also 
demonstrated effectiveness in preventing spontaneous 
ovarian metastasis, this finding indicates its potential as 
a therapeutic agent for surgery of metastatic cancer[99].
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During past decades dual targeting strategies have 
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