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Ying et al.: Mechanism of Iridoid Glucosides from Boschniakia rossica on Ovarian Cancer Cell

To explore the effect and possible mechanism of iridoid glucosides from Boschniakia rossica on ovarian cancer 
cell proliferation and metastasis. Human ovarian cancer cells were treated with different concentrations 
of iridoid glucosides from Boschniakia rossica. Also, human ovarian cancer cells were transfected with 
plasmid cloning deoxyribonucleic acid, plasmid cloning deoxyribonucleic acid circular-homeodomain-
interacting protein kinase 3, microRNA-NC+plasmid cloning deoxyribonucleic acid-circular-homeodomain-
interacting protein kinase 3 and microRNA-495-3p mimics+plasmid cloning deoxyribonucleic acid-circular-
homeodomain-interacting protein kinase 3, followed by treated with high-dose of iridoid glucosides from 
Boschniakia rossica. Cell functions were tested by colony formation, transwell and 3-(4, 5-dimethylthiazol-
2-yl)-2, 5 diphenyl tetrazolium bromide assays. Gene levels were examined using quantitative reverse 
transcription polymerase chain reaction and Western blot method. Ribonuclic acid interaction was verified 
using dual-luciferase reporter assay. Iridoid glucosides from Boschniakia rossica could reduce OVCAR3 
cell proliferation and metastasis. Moreover, iridoid glucosides from Boschniakia rossica decreased circular-
homeodomain-interacting protein kinase 3 expression and increased microRNA-495-3p expression. Plasmid 
cloning deoxyribonucleic acid-circular-homeodomain-interacting protein kinase 3 reversed iridoid glucosides 
from Boschniakia rossica-mediated the inhibition on OVCAR3 cell functions. Circular-homeodomain-
interacting protein kinase 3 targeted microRNA-495-3p. Also, microRNA-495-3p mimics abolished the effects 
of plasmid cloning deoxyribonucleic acid-circular-homeodomain-interacting protein kinase 3 on iridoid 
glucosides from Boschniakia rossica-mediated cell functions. Iridoid glucosides from Boschniakia rossica 
inhibited ovarian cancer cell proliferation and metastasis by circular-homeodomain-interacting protein 
kinase 3/microRNA-495-3p.

Key words: Iridoid glucosides from Boschniakia rossica, circular-homeodomain-interacting protein kinase 3, 
microRNA-495-3p, ovarian cancer

Ovarian Cancer (OC) incidence and mortality 
are increasing year by year, which has seriously 
threatened human life[1,2]. Generally, patients 
with advanced OC have a high recurrence rate 
after postoperative treatment and chemotherapy, 
and the 5 y survival rate is not satisfactory[3,4]. 
Targeted therapy has become an ideal choice 
for OC treatment[5,6], so the search for potential 
therapeutic targets has become the research focus 
of inhibiting OC malignant progression. 

Traditional Chinese Medicine (TCM) plays a vital 
function in OC treatment, which can mediate 
tumorigenesis by regulating gene expression 
and signaling pathway[7,8]. Boschniakia rossica 
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(B. rossica) is a TCM with antioxidant, anti-
inflammatory and anti-cancer effects[9,10]. Iridoid 
Glucosides from B. rossica (IGBR), the main 
active ingredients of B. rossica, has been proven to 
have protective effects against acute liver injury in 
rats[11]. Studies had shown that IGBR played an anti-
lung cancer effect by promoting cell apoptosis[12]. 
However, IGBR roles in OC progression remains 
unclear.
Circular Ribonuclic Acid (circRNA) is rich in the 
adsorption sites of microRNA (miRNA) to play 
a sponge function, and then regulates OC cell 
biological behaviors[13,14]. Circular-Homeodomain-
Interacting Protein Kinase 3 (Circ-HIPK3) has been 
found to be upregulated in OC tissues and serves 
as oncogene in OC[15,16]. MiR-495-3p is considered 
to be a tumor suppresser in OC[17]. In this study, 
star base software predicts that circ-HIPK3 can 
bind with miR-495-3p, but whether circ-HIPK3 
regulates OC progression by targeting miR-495-
3p has not been studied. Some studies have shown 
that the extracts of TCM can regulate circRNA-
related axis to regulate cancer progression[18]. Here, 
we found that IGBR can suppress circ-HIPK3 
expression and promote miR-495-3p expression, 
but whether IGBR mediates OC progression by 
circ-HIPK3/miR-495-3p pathway has not been 
investigated.
This study focuses on IGBR roles and mechanisms 
in OC progression. Based on the above, we 
hypothesizes that IGBR may affect the biological 
behavior of OC cells via circ-HIPK3/miR-495-3p 
axis.

MATERIALS AND METHODS
Extraction of IGBR:

According to previous studies[11], B. rossica 
(Qihongtang Pharmaceutical, Bozhou, China) 
was extracted with 80 % methanol followed 
by dichloromethane (CH2Cl2) and water (H2O) 
extraction. The aqueous layer was eluted on 
Mitsubishi Chemical Corporation (MCI)-gel 
CHP20P using a gradient methanol solution (10, 
30, 50, 70 and 100 %). The eluting components of 
50 % methanol were collected, and IGBR (49 % 
content) was obtained by high performance liquid 
chromatography. IGBR was diluted with culture 
medium to 200, 400, and 800 mg/ml.
Cell culture and grouping:

Human OC cells (OVCAR3, Procell, Wuhan, 

China) were cultured in Roswell Park Memorial 
Institute (RPMI)-1640 medium containing 20 % 
Fetal Bovine Serum (FBS), 10 μg/ml insulin and 
1 % penicillin-streptomycin. Cells were treated 
with different concentration of IGBR (200, 400, 
and 800 mg/ml) for 24 h and recorded as low-dose 
group, middle-dose group and high-dose group. 
Non-treated cells were used as control group. 
Cells were transfected with plasmid cloning 
Deoxyribonucleic Acid (pcDNA), pcDNA-circ-
HIPK3, miR-NC+pcDNA-circ-HIPK3, and miR-
495-3p+pcDNA-circ-HIPK3 using Lipofectamine 
3000 (Invitrogen, Carlsbad, CA, United States 
of America), followed by treated with 800 mg/
ml IGBR for 24 h, and recorded as pcDNA+high-
dose group, pcDNA-circ-HIPK3+high-dose group, 
miR-NC+pcDNA-circ-HIPK3+high-dose group, 
and miR-495-3p+pcDNA-circ-HIPK3+high-dose 
group.
3-(4, 5-Dimethylthiazol-2-yl)-2, 5 Diphenyl 
Tetrazolium Bromide (MTT) assay:

OVCAR3 cells in 96 well plates (3×103 cells/well) 
were treated with MTT solution and formazan 
solving liquid (Solarbio, Beijing, China). Optical 
Density (OD) value was detected by a microplate 
reader at 490 nm.

Colony formation assay:

OVCAR3 cells were cultured for 14 d in 6-well 
plates. The colonies were fixed and stained, 
followed by counted under a microscope.
Transwell:

OVCAR3 cells were seeded into transwell upper 
chamber pre-coated with or without Matrigel. 
After 24 h, migrated and invaded cells were 
photographed and counted under a microscope. 
Quantitative Reverse Transcription Polymerase 
Chain Reaction (qRT-PCR):

Total RNAs were extracted and synthesized into 
complementary DNA (cDNA). PCR amplification 
was performed using SYBR Green (Takara, Tokyo, 
Japan). Relative circ-HIPK3 and miR-495-3p 
levels were analyzed by 2−ΔΔCt method.
Dual-luciferase reporter assay:

According to the prediction results of star base 
software, the binding sites and mutant sites of 
circ-HIPK3 were cloned into pmirGLO vectors. 
OVCAR3 cells were transfected with vectors and 
miR-NC/miR-495-3p, and luciferase activity was 
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Fig. 1: Colony formation measured cell proliferation

detected to assess interaction.
Western blot:

Total proteins were extracted, separated and 
transferred onto Polyvinylidene Difluoride (PVDF) 
membranes. After incubated with anti-Matrix 
Metalloproteinase (MMP)-2 (1:1000, ab97779), 
anti-MMP-9 (1:1000, ab38898) and anti-β-actin 
(1:1000, ab8227), membranes were treated with 
secondary antibody (1:50000, ab205718). Signals 
were detected using Enhanced Chemiluminescence 
(ECL) reagents (Beyotime).
Statistical analysis:

Data were analyzed by Statistical Package for 
the Social Sciences (SPSS) 21.0 software and 
expressed as x̄±s. Student’s t-test and Analysis of 
Variance (ANOVA) were used for comparisons. 
p<0.05 was considered significant difference.

RESULTS AND DISCUSSION
Compared with control group, cell viability and 
colony numbers in low-dose, middle-dose and 
high-dose IGBR groups were decreased (fig. 1 
and Table 1). MMP2 and MMP9 levels, as well 

as the migrated and invaded cells, were markedly 
reduced in the different concentrations of IGBR 
treatment groups (fig. 2 and Table 2). Circ-
HIPK3 was downregulated and miR-495-3p was 
upregulated in IGBR treatment groups in a dose-
depended manner (Table 3).
Compared to pcDNA+high-dose IGBR group, cell 
viability, colony numbers, migrated cells, invaded 
cells, MMP2 and MMP9 levels were increased in 
the pcDNA-circ-HIPK3+high-dose IGBR group 
(fig. 3 and Table 4). Starbase software there had 
bind sites between circ-HIPK3 and miR-495-3p 
(fig. 4). MiR-495-3p overexpression inhibited the 
luciferase activity of Wild-Type (WT)-circ-HIPK3 
vector, rather than that of the Mutant (MUT)-circ-
HIPK3 vector (Table 5). Besides, miR-495-3p 
expression could be decreased by pcDNA-circ-
HIPK3 (Table 6).
Compared to miR-NC+pcDNA-circ-HIPK3+high-
dose IGBR group, cell viability, colony numbers, 
migrated cells, invaded cells, MMP2 and MMP9 
levels were reduced in the miR-495-3p+pcDNA-
circ-HIPK3+high-dose IGBR group (fig. 5 and 
Table 7).

Group OD 490 nm Colony numbers

Control 1.025±0.11 101±6.27

Low-dose 0.843±0.06* 76±3.10*

Middle-dose 0.643±0.05* 54±3.19*

High-dose 0.513±0.04* 41±2.02*

F 91.968 394.686

p 0.000 0.000

Note: *p<0.05

TABLE 1: EFFECTS OF IGBR ON OVCAR3 CELL PROLIFERATION (x̄±s, n=9)
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Group MMP2 MMP9 Migrated cells Invaded cells

NC 0.83±0.07 0.75±0.07 186±11.25 137±8.63

Low-dose 0.71±0.06* 0.62±0.05* 161±10.03* 104±7.16*

Middle-dose 0.51±0.04* 0.45±0.04* 121±8.12* 72±3.69*

High-dose 0.40±0.03* 0.34±0.03* 85±4.08* 61±2.24*

F 122.700 119.515 229.767 292.652

p 0.000 0.000 0.000 0.000

Note: *p<0.05

TABLE 2: EFFECTS OF IGBR ON OVCAR3 CELL METASTASIS (x̄±s, n=9)

Group Circ-HIPK3 MiR-495-3p

Control 1.00±0.09 1.00±0.10

Low-dose 0.84±0.07* 1.62±0.12*

Middle-dose 0.63±0.03* 2.11±0.16*

High-dose 0.42±0.03* 2.38±0.17*

F 154.764 167.738

p 0.000 0.000

Note: *p<0.05

TABLE 3: EFFECT OF IGBR ON circ-HIPK3 AND miR-495-3P EXPRESSION (x̄±s, n=9)

Fig. 2: Western blot detected MMP2 and MMP9 protein levels

Fig. 3: Circ-HIPK3 reversed the effect of IGBR on colony numbers, MMP2 and MMP9 levels, (A): Colony formation assay and (B): 
Western blot
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Fig. 5: Effects of miR-495-3p and circ-HIPK3 on IGBR-mediated colony numbers, MMP2 and MMP9 levels, (A): Colony formation 
assay and (B): Western blot

Group Circ-HIPK3 MMP2 MMP9 OD 490 nm Colony 
numbers

Migrated 
cells

Invaded 
cells

pcDNA+high-dose 1.00±0.11 0.41±0.03 0.32±0.02 0.510±0.04 43±3.11 81±3.56 63±2.24

pcDNA-circ-HIPK3+high-dose 2.14±0.14* 0.88±0.07* 0.78±0.06* 0.963±0.08* 115±8.10* 201±12.35* 154±8.12*

t 19.209 18.514 21.820 15.194 24.895 28.009 32.41

p 0.000 0.000 0.000 0.000 0.000 0.000 0.000

Note: *p<0.05

TABLE 4: Circ-HIPK3 REVERSED IGBR-MEDIATED OVCAR3 CELL PROLIFERATION AND METASTASIS 
(x̄±s, n=9)

Fig. 4: Star base predicted the binding sites

Group
Luciferase activity

WT-circ-HIPK3 MUT-circ-HIPK3

miR-NC 1.00±0.08 1.00±0.10

miR-495-3p 0.43±0.02* 0.97±0.08

t 20.737 0.703

p 0.000 0.492

Note: *p<0.05

TABLE 5: ASSESSING RNA INTERACTION (x̄±s, n=9)

Group Circ-HIPK3 miR-495-3p

pcDNA 1.00±0.10 1.00±0.08

pcDNA-circ-HIPK3 2.23±0.16* 0.39±0.04*

t 19.56 20.46

p 0.000 0.000

Note: *p<0.05

TABLE 6: QRT-PCR DETECTED miR-495-3P EXPRESSION (x̄±s, n=9)
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thyroid carcinoma cell metastasis[26]. Also, 
miR-495-3p suppressed colorectal cancer cell 
proliferation[27]. In OC-related study, low miR-
493-5p level is thought to be associated with the 
malignant progression of OC[17]. Therefore, miR-
493-5p may play anti-tumor role in OC. Here, 
IGBR enhanced miR-493-5p expression, and 
circHIPK3 sponged miR-493-5p to reduce its 
expression. Further analysis revealed that miR-
493-5p eliminated the promotion effect of circ-
HIPK3 on IGBR-treated cell proliferation and 
metastasis. All results suggest that IGBR may 
inhibit OC cell progression by circ-HIPK3/miR-
495-3p pathway.
In conclusion, these data showed that IGBR 
restrained OC cell proliferation and metastasis via 
circ-HIPK3/miR-495-3p pathway. These findings 
provide a new direction for developing OC 
treatment drugs.
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