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Zhang et al.: Mechanism of Astragalus membranaceus in the Treatment of Parkinson’s disease

This study aims to explore the potential mechanisms of Astragalus membranaceus in the treatment of 
Parkinson’s disease, with a particular focus on its role in neurotransmitter regulation. Firstly, using network 
pharmacology methods, we screened potential active ingredients from Astragalus membranaceus based on 
traditional Chinese medicine systems pharmacology database criteria, with oral bioavailability ≥40 % and 
drug-likeness ≥0.1. Subsequently, potential protein targets of these active ingredients were predicted using 
databases such as SwissTargetPrediction and Stitch. Targets related to Parkinson’s disease and dopamine 
metabolism were obtained from GeneCards and Online Mendelian Inheritance in Man databases. We then 
constructed networks of active ingredients and targets, further filtering out targets associated with Parkinson’s 
disease. Lastly, a protein-protein interaction network was constructed using the STRING database, and key 
genes in the network were quantified using the MCODE application. Functional enrichment analysis was 
performed using gene ontology/Kyoto encyclopedia of genes and genomes. Finally, molecular docking was 
employed to validate target genes. Our findings identified the CHRM2 gene as one of the potential targets 
of Astragalus membranaceus in treating Parkinson’s disease. Further bioinformatics analysis revealed the 
modulatory effect of Astragalus membranaceus on the acetylcholine receptor signaling pathway, providing new 
theoretical insights into its neuroprotective effect. This study, employing a comprehensive approach of network 
pharmacology and bioinformatics analysis, elucidated the potential mechanisms of Astragalus membranaceus 
in Parkinson’s disease treatment, emphasizing the significant role of neurotransmitter regulation.
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Parkinson’s Disease (PD) is a chronic and progressive 
neurodegenerative disorder predominantly 
affecting elderly individuals[1]. A key pathological 
characteristic of PD is the substantial degeneration 
of dopaminergic neurons in the Substantia Nigra pars 
compacta (SNpc) of the midbrain[2-4]. Normally, these 
neurons release dopamine to regulate motor functions 
in the striatum. When these neurons are lost, it leads 
to a marked reduction in dopamine levels in the 
striatum[5]. Another pathological characteristic of PD 
is the formation of Lewy bodies, which are mainly 
composed of aggregated alpha-synuclein and are 
present in the remaining dopaminergic neurons[6]. PD 
is also associated with significant neuroinflammation, 
characterized by the activation of microglia and the 
increased release of pro-inflammatory cytokines[7-9].
Dopamine is a crucial neurotransmitter that regulates 

motor, emotional, and cognitive functions[10]. In 
PD patients, the loss of dopaminergic neurons 
results in a significant reduction in central nervous 
system dopamine levels, leading to primary 
symptoms such as tremors, rigidity, bradykinesia, 
and postural instability[11]. Additionally, PD patients 
may experience non-motor symptoms, including 
depression, anxiety, sleep disturbances, and 
autonomic dysfunction[12].
Scutellaria baicalensis (S. baicalensis), commonly 
known as Astragalus, is a traditional Chinese 
medicinal herb widely used for treating inflammation, 
infections, and neurological disorders[13]. Its primary 
active components include baicalin, baicalein, 
wogonoside, and wogonin[14,15]. Modern research 
has demonstrated that S. baicalensis and its main 
constituents have significant neuroprotective 
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effects[16]. Baicalin and baicalein possess potent 
anti-inflammatory properties, capable of inhibiting 
microglial activation and reducing the release of 
pro-inflammatory cytokines, thereby alleviating 
neuroinflammation[17,18]. These compounds can 
also scavenge free radicals and reduce oxidative 
stress, thus protecting dopaminergic neurons from 
damage[19]. Furthermore, baicalin regulates the 
expression of apoptosis-related genes, inhibiting 
neuronal apoptosis and slowing the progression 
of neurodegenerative diseases. Additionally, the 
components of S. baicalensis can promote the 
expression of nerve growth factors and synaptic 
formation, aiding in the recovery of neurological 
functions.
This study aims to systematically identify and validate 
the mechanisms by which S. baicalensis and its major 
components regulate dopamine neurotransmitter 
metabolism in PD. Network pharmacology methods 
will be used to predict the potential targets of the 
main components of S. baicalensis, especially those 
related to dopamine metabolism. Pathway enrichment 
analysis will be conducted on the predicted targets 
to identify the key pathways involved in dopamine 
metabolism.

MATERIALS AND METHODS  

Network pharmacology analysis:

The chemical structures of the major active 
components of S. baicalensis (baicalin, baicalein, 
wogonoside, and wogonin) were sourced from the 
Traditional Chinese Medicine Systems Pharmacology 
Database and Analysis Platform (TCMSP) (http://
tcmspw.com/tcmsp.php).

Target prediction:

Utilize databases such as SwissTarget (http://www.
SwisstargetPrediction.ch/) Prediction and Stitch 
to predict potential protein targets of the identified 
active compounds.

PD-related target screening:

Utilize general databases from Online Mendelian 
Inheritance in Man (OMIM) (https://omim.org/), and 
GeneCards (https://www.genecards.org/) to search 
for genes and proteins linked to PD.

Protein-Protein Interaction (PPI):

Common targets were entered into the Search Tool 
for the Retrieval of Interacting Genes (STRING) 
database (https://string-db.org/) for analysis. The 

protein type was set to Homo sapiens, and the 
minimum interaction threshold was set to 0.4.

Network construction:

Construct a compound-target network using 
Cytoscape version 3.8.2 to visualize the interactions 
between the active compounds and their predicted 
targets.

Pathway enrichment analysis:

Perform pathway enrichment analysis on the 
identified targets using tools such as DAVID or the 
Kyoto Encyclopedia of Genes and Genomes (KEGG) 
pathway database to identify key pathways related to 
dopamine metabolism. Focus on pathways known to 
be involved in the pathophysiology of PD.

Molecular docking:

Obtaining the SDF format files of core drug’s major 
active ingredients from the PubChem database, 
collecting critical target protein structures from 
the Protein Data Bank (PDB) database, optimizing 
the targets using Pymol software by removing 
water molecules and small molecule ligands, and 
performing hydrogenation and charge processing 
using AutoDock Tools, then saving them as pdbqt 
format. 

RESULTS AND DISCUSSION
To further explore the molecular mechanisms 
of Astragalus in combating PD, we conducted a 
network pharmacology and molecular docking 
study. We identified potential active compounds 
in Astragalus based on screening criteria of Oral 
Bioavailability (OB) ≥40 % and Drug-Likeness (DL) 
≥0.1. Ultimately, we identified 27 potential active 
compounds from Astragalus (Table 1).
We utilized databases such as SwissTargetPrediction 
and Stitch to predict potential protein targets of 
active ingredients in Astragalus membranaceus 
(A. membranaceus). Subsequent analysis 
yielded a substantial number of potential targets. 
Simultaneously, through searches in GeneCards and 
OMIM databases using keywords PD and dopamine 
metabolism, we obtained a set of targets relevant to 
these diseases.
Using the mapping tool of Venny 2.1 online 
software, we compared the predicted targets with 
disease-associated targets (fig. 1A), thereby selecting 
specific targets closely related to PD and dopamine 
metabolism.
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networks (fig. 1B). Furthermore, we delineated the 
positions and roles of these targets in PD-related 
pathways.

We illustrated the relationships between active 
ingredients of A. membranaceus and their targets 
through compound-target networks and target-disease 

Fig. 1: Overlapping target genes and the drug-compound-target-disease network between Astragalus and PD, (A): Venn  
diagram showing the common drug-disease targets between Astragalus and PD and (B): Overlapping target genes and the  
drug-compound-target-disease network between Astragalus and PD

ID Molecule OB (%) DL

MOL000228 (2R)-7-hydroxy-5-methoxy-2-phenylchroman-4-one 55.23 0.2

MOL002573 β-patchoulene 50.69 0.11

MOL002910 Carthamidin 41.15 0.24

MOL002911 2,6,2',4'-tetrahydroxy-6'-methoxychaleone 69.04 0.22

MOL002913 Dihydrobaicalin_qt 40.04 0.21

MOL002914 Eriodyctiol (flavanone) 41.35 0.24

MOL002915 Salvigenin 49.07 0.33

MOL002917 5,2',6'-Trihydroxy-7,8-dimethoxyflavone 45.05 0.33

MOL002927 Skullcapflavone II 69.51 0.44

MOL002928 Oroxylina 41.37 0.23

MOL002932 Panicolin 76.26 0.29

MOL002934 Neobaicalein 104.34 0.44

MOL002937 Dihydrooroxylin 66.06 0.23

MOL000612 (-)-Alpha-cedrene 55.56 0.1

MOL000073 Ent-epicatechin 48.96 0.24

MOL000131 Electron-ion collider 41.9 0.14

MOL000449 Stigmasterol 43.83 0.76

MOL000676 Dibutyl phthalate 64.54 0.13

MOL001490 Bis((2S)-2-ethylhexyl) benzene-1,2-dicarboxylate 43.59 0.35

MOL001889 Methyl linolelaidate 41.93 0.17

MOL002879 2,3-O-isopropylidene-2,3-dihydroxy-1,4-
bis(diphenylphosphino)butane 43.59 0.39

MOL002897 Epiberberine 43.09 0.78

MOL003475 9-Cedranone 67.6 0.12

MOL003568 Patchoulene 49.06 0.11

MOL008206 Moslosooflavone 44.09 0.25

MOL011081 Linolenic acid methyl ester 46.15 0.17

MOL012246 5,7,4'-trihydroxy-8-methoxyflavanone 74.24 0.26

TABLE 1: INFORMATION ON ACTIVE INGREDIENTS OF A. membranaceus
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of membrane. Furthermore, molecular function 
annotations suggest that molecule phospholipase 
C activity, G-protein beta/gamma-subunit complex 
binding may be involved in A. membranaceus 
therapeutic effect on PD. Additionally, KEGG 
pathway enrichment analysis reveals that the 
potential therapeutic mechanism of A. membranaceus 
against PD mainly involves neuroactive ligand-
receptor interaction, calcium signaling pathway, 
phospholipase D signaling pathway (fig. 3B and 
Table 3).
Based on degree centrality, target clustering analysis, 
and KEGG analysis, we hypothesized that CHRM2 
may play a crucial role in the therapeutic effect 
of Astragalus on PD. We conducted molecular 
docking analysis to validate the binding of the main 
compounds of Astragalus with CHRM2. The binding 
energies between compounds and targets are shown 
in (fig. 4A and fig. 4B).

We used the STRING database to construct a PPI 
network to predict protein interactions. Subsequently, 
the significance of these genes in the network 
was quantified using the MCODE application in 
Cytoscape (fig. 2A and fig. 2B). The data indicated 
that SCN5A, ADRB2, CHRM3, CHRM1, CHRM2, 
GABRA2, and GABRA1 are the most relevant 
proteins (Table 2). This includes only CHRM2’s 
neurotransmitter-related information about PD.
As shown in fig. 3A, biological process annotations 
suggest that A. membranaceus potential therapeutic 
mechanism in PD is primarily associated with 
adenylate cyclase-modulating G protein-coupled 
receptor signaling pathway, cellular response to 
acetylcholine, acetylcholine receptor signaling 
pathway, G protein acetylcholine coupled receptor 
signaling pathway. Cellular compartment annotations 
indicate that the action of A. membranaceus in PD is 
mainly related to compartment extrinsic component 

Fig. 2: Network analysis of PPI, (A): PPI network and (B): Network map of cross-target genes between active ingredients and 
PD-associated targets

Gene Description Associated diseases Neurotransmitter

SCN5A Sodium voltage-gated channel alpha 
subunit 5A

Long QT syndrome, Brugada syndrome 
and cardiomyopathy No

ADRB2 Adrenoceptor beta 2 Asthma and Chronic Obstructive 
Pulmonary Disease (COPD) No

CHRM3 Muscarinic acetylcholine receptor M3 Asthma and Overactive bladder Acetylcholine

CHRM1 Muscarinic acetylcholine receptor M1 Alzheimer's disease and PD Acetylcholine

CHRM2 Muscarinic acetylcholine receptor M2 Alzheimer's disease and schizophrenia Acetylcholine

GABRA2 Gamma-aminobutyric acid receptor 
subunit alpha-2 Alcoholism and epilepsy GABA

GABRA1 Gamma-aminobutyric acid receptor 
subunit alpha-1 Epilepsy, anxiety and insomnia GABA

TABLE 2: OVERVIEW OF GENES, NEUROTRANSMITTERS AND ASSOCIATED DISEASES
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Fig. 3: GO and KEGG enrichment analysis, (A): GO and (B): KEGG pathway enrichment analysis

Ontology Description Padjust Gene ID

BP G protein-coupled acetylcholine receptor 
signaling pathway 2.8236E-15 GNA15/GNAQ/CHRM2/GRK2/CHRM3/CHRM1/

PLCB1/CHRM5

BP Adenylate cyclase-modulating G protein-
coupled receptor signaling pathway 5.27948E-14

GNA15/GNA12/GNAQ/CHRM2/GRK5/GNAS/
CHRM3/CHRM1/LPAR3/LPAR1/GNA14/CHRM5/

LPAR2

BP Acetylcholine receptor signaling pathway 5.27948E-14 GNA15/GNAQ/CHRM2/GRK2/CHRM3/CHRM1/
PLCB1/CHRM5

BP Cellular response to acetylcholine 7.25964E-14 GNA15/GNAQ/CHRM2/GRK2/CHRM3/CHRM1/
PLCB1/CHRM5

BP Response to acetylcholine 7.73408E-14 GNA15/GNAQ/CHRM2/GRK2/CHRM3/CHRM1/
PLCB1/CHRM5

CC Heterotrimeric G-protein complex 1.68788E-09 GNA15/GNA12/GNAQ/GNAS/GNG12/GNA14

CC GTPase complex 1.68788E-09 GNA15/GNA12/GNAQ/GNAS/GNG12/GNA14

CC Extrinsic component of membrane 3.16186E-09 GNA15/GNA12/GNAQ/GNAS/KALRN/ARHGEF25/
GNG12/GNA14/PIK3R6/PIK3R5

CC Extrinsic component of cytoplasmic side 
of plasma membrane 4.49376E-07 GNA15/GNA12/GNAQ/GNAS/GNG12/GNA14

CC Postsynaptic membrane 6.43986E-06 F2R/CHRM2/CHRM3/CHRM1/CHRM5/CHRNA5/
GABRA2

MF G-protein beta/gamma-subunit complex 
binding 6.08189E-13 GNA15/GNA12/GNAQ/GNAS/PLCB2/GNA14/

PIK3R5

MF Phosphatidylinositol phospholipase C 
activity 1.1669E-12 CHRM3/PLCB2/CHRM1/PLCB1/CHRM5/PLCB3/

BDKRB2

MF Phospholipase C activity 1.39668E-12 CHRM3/PLCB2/CHRM1/PLCB1/CHRM5/PLCB3/
BDKRB2

MF Bioactive lipid receptor activity 1.63234E-09 LPAR3/LPAR1/LPAR6/LPAR4/LPAR2

MF Phosphoric diester hydrolase activity 4.15933E-09 CHRM3/PLCB2/CHRM1/PLCB1/CHRM5/PLCB3/
BDKRB2

KEGG Phospholipase D signaling pathway 9.24555E-17
GNA12/F2R/AGTR1/GNAS/PLCB2/PLCB1/
LPAR3/LPAR1/LPAR6/LPAR5/LPAR4/LPAR2/

PLCB3/PIK3R6/PIK3R5

TABLE 3: GO ENRICHMENT ANALYSIS OF THE TOP 20 RESULTS AND KEGG PATHWAY ENRICHMENT 
ANALYSIS OF THE TOP 20 RESULTS
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signaling, including dysregulation of muscarinic 
receptors, could contribute to the pathophysiology 
of PD[24]. Specifically, CHRM2 dysfunction or 
alterations in its expression levels might impact 
cholinergic neurotransmission and subsequently 
influence motor and cognitive functions implicated 
in PD[25]. Moreover, studies have implicated 
muscarinic acetylcholine receptors, including M2, in 
the regulation of dopaminergic signaling pathways, 
which are central to the pathogenesis of PD[26-28]. 
Dysfunctional interactions between cholinergic 
and dopaminergic systems may exacerbate 
neurodegenerative processes and contribute to PD 
symptomatology[29,30].
The results of GO enrichment analysis indicate that 
Astragalus may exert its potential effects in the 
treatment of PD by modulating various biological 
processes, cellular components, and molecular 
functions. Specifically, Astragalus may influence 
biological processes relevant to PD pathology, 
including neurotransmitter signaling, apoptosis 
regulation, and inflammation modulation. In terms 
of cellular components, Astragalus effects may 
primarily involve the regulation of extracellular 
membrane structures, potentially related to cell 
signaling and intercellular interactions. Additionally, 
Astragalus may impact various molecular functions 
such as phosphatase activity, G protein-coupled 
receptor binding, and cytokine activity, which may 

A. membranaceus is believed to potentially possess 
neuroprotective effects against PD[20]. The active 
compounds within Astragalus are considered to 
exhibit anti-inflammatory and neuroprotective 
properties, which may contribute to alleviating 
neuroinflammation, safeguarding neurons from 
damage, and potentially playing a role in treating 
PD[21,22].
27 potential active compounds were identified 
in Astragalus. Using databases such as 
SwissTargetPrediction and Stitch, potential protein 
targets of active ingredients in Astragalus were 
predicted, and specific targets relevant to PD and 
dopamine metabolism were selected. A PPI network 
was constructed using the STRING database, and key 
proteins related to PD, including SCN5A, ADRB2, 
CHRM3, CHRM1, CHRM2, GABRA2, and GABRA1 
were identified. Only the neurotransmitter-related 
information of CHRM2 was included regarding PD. 
In the context of PD, CHRM2, encoding the 
muscarinic acetylcholine receptor M2, emerges 
as a significant gene of interest[23]. Acetylcholine, 
a neurotransmitter, is intricately involved in 
modulating various aspects of neuronal function, 
including motor control, cognition, and memory. The 
muscarinic acetylcholine receptors, particularly M2 
subtype, play a crucial role in mediating cholinergic 
neurotransmission within the central nervous system. 
Research suggests that alterations in cholinergic 

KEGG Calcium signaling pathway 9.24555E-17
GNA15/CYSLTR2/GNAQ/F2R/CHRM2/AGTR1/
GNAS/BDKRB1/CHRM3/PLCB2/CHRM1/PLCB1/

CYSLTR1/GNA14/CHRM5/PLCB3/BDKRB2

KEGG Neuroactive ligand-receptor interaction 2.40215E-15
CYSLTR2/F2R/CHRM2/EDN2/AGTR1/BDKRB1/

CHRM3/CHRM1/LPAR3/CYSLTR1/LPAR1/LPAR6/
CHRM5/LPAR4/LPAR2/BDKRB2/CHRNA5/GABRA2

KEGG Cholinergic synapse 5.12238E-12 GNAQ/CHRM2/CHRM3/PLCB2/CHRM1/PLCB1/
GNG12/CHRM5/PLCB3/PIK3R6/PIK3R5

KEGG Regulation of actin cytoskeleton 1.01446E-11
GNA12/F2R/CHRM2/BDKRB1/CHRM3/CHRM1/
GNG12/LPAR1/CHRM5/LPAR5/LPAR4/LPAR2/

BDKRB2

Fig. 4: Molecular docking, (A): Binding energy and (B) Interaction
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neurotransmitter-related genes associated with PD, 
including the CHRM2 gene. Our findings suggest 
that the CHRM2 gene might be one of the potential 
targets for A. membranaceus in treating PD. By 
modulating neurotransmitter signaling pathways, 
particularly the acetylcholine receptor signaling 
pathway, A. membranaceus may regulate the release 
and signal transduction of neurotransmitters such 
as dopamine, thereby exerting its neuroprotective 
effects.
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