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Li et al.: Pharmacological Mechanism of Gynostemma pentaphyllum in Gastric Cancer

Gynostemma pentaphyllum is commonly used to treat various tumors in China. The aim of the study 
is to explore the pharmacological mechanism of Gynostemma pentaphyllum in gastric cancer using 
joint network pharmacology, molecular docking and in vitro experimental verification. First, the 
active constituents and potential targets of Gynostemma pentaphyllum were screened from a public 
database and screening of core targets anti-gastric cancer using protein-protein interaction networks. 
The Cancer Genome Atlas and Human Protein Atlas databases were used to evaluate the messenger 
ribonucleic acid and protein expression of core target genes in normal gastric epithelium and 
gastric cancer tissues and their relationship with overall survival in gastric cancer. Functional and 
pathway enrichment analyses of the potential targets were performed using gene ontology and Kyoto 
encyclopedia of genes and genomes. Fifteen active components and all related targets of Gynostemma 
pentaphyllum were retrieved from the Traditional Chinese Medicine Systems Pharmacology database 
and 127 potential targets were identified by intersection with colorectal cancer-related targets. 
Protein-protein interaction network analysis showed that six target genes, AKT serine/threonine 
kinase 1, Jun proto-oncogene and B-cell lymphoma 2 proteins were key genes. Gene ontology 
enrichment analysis involved 1892 BP, 37 CC and 142 MF. Kyoto encyclopedia of genes and genomes 
enrichment analysis showed that the anti-cancer effects of Gynostemma pentaphyllum were mediated 
by advanced glycation end products-receptor for advanced glycation end products, interleukin-17, 
hypoxia inducible factor 1 and transforming growth factor signalling pathways. Molecular docking 
revealed that the three core target proteins stably bound to quercetin and rhamnazin. The results of 
the in vitro experiments showed that both quercetin and rhamnazin inhibited the activity of gastric 
cancer cells, up-regulated the messenger ribonucleic acid and protein AKT serine/threonine kinase 
1 and down-regulated Jun proto-oncogene and B-cell lymphoma 2 protein activities at the specified 
concentrations. This study revealed the potential role of Gynostemma pentaphyllum in the treatment 
of gastric using network pharmacology, molecular docking and in vitro experiments.

Key words: Gynostemma pentaphyllum, gastric cancer, network pharmacology, molecular docking, 
experimental validation

Gastric Cancer (GC) remains a formidable adversary 
in the global battle against malignant tumors. It is 
consistently ranked as the fourth most common 
and second most lethal cancer worldwide[1]. The 
disparity between the high curability of early stage 
GC and the grim prognosis of advanced stages is 
stark with the latter exhibiting a high propensity 
for metastasis, significant mortality, diminished 
likelihood of effective surgical removal and a dismal 

5 y survival rate[2]. The prognosis for most patients 
is poor, predominantly because of the challenges 
of distant metastasis and recurrent disease[3]. While 
advancements in early detection and surgical 
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interventions have markedly enhanced the treatment 
outcomes for GC, the 5 y survival rate remains below 
30 %[4]. Chemotherapy, another cornerstone of GC 
management is associated with considerable adverse 
effects and a high risk of developing drug resistance[5]. 
Natural anticancer compounds are emerging as a 
beacon of hope because of their superior efficacy, 
minimal side effects and low toxicity[6], making the 
exploration of these agents an invaluable endeavour 
for enhancing cancer treatment and patient outcomes.
Gynostemma pentaphyllum (GPH), a member of 
the Cucurbitaceae family, is predominantly found 
in Northeast and Southeast Asia[7]. Previous studies 
have highlighted its multifaceted effects, including 
anti-inflammatory properties[8], antioxidant stress 
resistance[9], immunomodulation[10], anti-aging 
benefits[11] and cardiovascular disease prevention[12] 
with its anticancer activity being particularly notable[13]. 
GPH contains various chemical substances such as 
saponins, polysaccharides and flavonoids[7]. Both 
saponins and flavonoids have been reported to possess 
antiproliferative effects against a wide range of tumor 
cell lines, including liver cancer[14], colorectal cancer[15], 
glioma[16], oral cancer[17], tongue cancer[18] and lung 
cancer[19]. Network pharmacology is a novel and 
valuable approach that leverages systematic network 
models to analyze the interactions among Chinese 
medicine formulas, diseases, targets and pathways[20], 
providing a theoretical foundation for further research 
on natural medicines[21]. Accordingly, we employed 

network pharmacology to identify the potential 
targets of GPH and unveil its complex mechanisms 
in the treatment of GC. Furthermore, we validated 
the molecular docking results through in vitro cell 
experiments, offering a reliable theoretical basis for the 
application of GPH in GC treatment. The detailed study 
process is shown in fig. 1.

MATERIALS AND METHODS
Network pharmacological analysis:

Screening of effective components and targets 
of GPH: The main components of GPH were 
extracted from the Traditional Chinese Medicine 
Systems Pharmacology (TCMSP) database[22]. Active 
ingredients were screened based on oral bioavailability 
≥30 % and drug similarity ≥0.18 thresholds and their 
corresponding targets were collected. Uniprot was used 
to convert targets to standardized gene names and select 
validated protein data. 

Identification of GC-related gene targets: The targets 
related to GC were retrieved from the human Online 
Mendelian Inheritance in Man (OMIM) database 
(https://omim.org/)[23] and GeneCards (https://www.
genecards.org/)[24], utilizing "gastric cancer" as the 
search keyword. The redundant target genes were 
removed. Venn diagram depicting the intersection of 
genes was created to identify the potential targets of 
GPH in combating gastric cancer.

Fig. 1: Research flow chart 
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Drug-ingredient-target-disease network construction: 
The active ingredients and targets of GPH were integrated 
into Cytoscape 3.8.2 to construct the network diagram 
illustrating the "GPH-active ingredients-target-GC" 
interactions. In this network diagram, the nodes 
symbolize the action targets, active components, GC 
and GPH whereas the edges denote the interactions 
between them.

Construction of Protein-Protein Interaction 
(PPI) networks: The intersecting targets of GPH 
and GC were entered into the STRING database 
(https://cn.string-db.org/cgi/input.pl), selecting 
"Homo sapiens" as the species, with the interaction 
confidence threshold set to medium confidence ≥0.7. 
Disconnected nodes were hidden to generate a PPI 
network diagram. The results were then imported 
into Cytoscape 3.8.2 for network construction and 
topological analysis and the key targets within the 
network were filtered. The selection parameters for 
the core targets included Degree Centrality (DC). 

Gene Ontology (GO) and Kyoto Encyclopedia of 
Genes and Genomes (KEGG) pathway enrichment 
analysis: Enrichment analysis was conducted using 
the Database for Annotation, Visualization and 
Integrated Discovery (DAVID, https://david.ncifcrf.
gov/)[25] and the “Disease Target Network”. GO 
enrichment for graphene oxide included Biological 
Processes (BP), Cellular Components (CC) and 
Molecular Functions (MF). For GO and KEGG, 
an enrichment p<0.05 was considered statistically 
significant. The disease-target pathway network was 
visualized using Cytoscape (version 3.8.2).

Validation of key targets in The Cancer Genome 
Atlas (TCGA)-Genotype-Tissue Expression 
(GTEX) and Human Protein Atlas (HPA) 
databases:

To validate the key targets against TCGA (https://
portal.gdc.cancer.gov)[26], we downloaded and 
organized Ribonucleic Acid (RNA)-sequence data 
processed from the TCGA GTEX and TCGA STAD 
projects. The mRNA expression of six key genes 
in TPM format was extracted to assess the Overall 
Survival (OS) of patients with GC with high or 
low expression of these key genes. HPA (https://
www.proteinatlas.org/)[27] was used to retrieve the 
expression and distribution of proteins in the normal 
stomach and gastric tissues for these six key targets.

Molecular docking:

Core active components and targets of GPH 

were selected for molecular docking. The two-
dimensional structures of the core active components 
were downloaded from the TCMSP database and 
set in mol2 format. Three-dimensional structures 
of the target proteins were downloaded from the 
Protein Data Bank (PDB, https://www.rcsb.org/)[28] 
and saved in the PDB format. PyMOL software[29] 
was used to remove water molecules and small-
molecule ligands from the target protein structures. 
AutoDockTools-1.5.6[30] was used to add hydrogen 
and charge to the active components and target 
proteins to construct docking pockets for molecular 
docking. PyMOL software was used to visualize the 
docking results.

Validation of in vitro experiments:

Cell culture, drug source and viability analysis: 
SGC7901 GC cells were cultured in Roswell Park 
Memorial Institute-1640 medium supplemented with 
10 % Fetal Bovine Serum (FBS) and 1 % penicillin-
streptomycin in a humidified incubator at 37° and 5 
% CO2. Quercetin (No.: HY-18085) and rhamnazin 
(Case No.: HY-N8342) were acquired from 
MedChemExpress (https://www.medchemexpress.
cn/), dissolved in Dimethyl Sulfoxide (DMSO) and 
diluted in the medium to sequential concentrations 
(final DMSO concentration of 0.1 %). To assess 
the inhibitory effects of quercetin and rhamnetin 
on cell viability, logarithmically growing SGC7901 
cells were seeded in 96-well plates at a density of 
5×104 cells per well and treated with the specified 
concentrations of quercetin, rhamnetin or vehicle 
(medium containing 0.1 % DMSO) for 48 h. After 
treatment, 10 μl of 3-(4,5-dimethylthiazol-2-yl)-
5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-
2H-tetrazolium (MTS) solution was added to 
each well and incubated at 37° for 30 min. The 
absorbance was measured at 450 nm using a Bio-Rad 
spectrophotometer (USA).

Real Time-qualitative Polymerase Chain 
Reaction (RT-qPCR) analysis: Total RNA was 
extracted from SGC7901 cells treated with different 
concentrations of quercetin and rhamnazin for 48 h 
using a total RNA rapid extraction kit. The total RNA 
concentration was determined using a NanoDrop one 
spectrophotometer (Thermo Scientific, USA). Total 
RNA was reverse-transcribed to complementary 
Deoxyribonucleic Acid (cDNA) using the HiFiScript 
genomic Deoxyribonucleic Acid (gDNA) removal 
cDNA synthesis kit. The Polymerase Chain Reaction 
(PCR) system was prepared using the SYBR Green 
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from Proteintech (Wuhan, China). Horseradish 
peroxidase-conjugated secondary antibody (Thermo 
Fisher Scientific, Shanghai, China) was used for each 
protein sample with the band intensity normalized to 
their own internal standard protein (β-actin). 

Statistical analysis:

All data parts of the network pharmacology analysis 
were automated using software or databases, such 
as the p-values for GO and KEGG, which were 
statistically analyzed automatically using the DAVID 
database. All experimental data are presented 
as mean±Standard Deviation (SD). Univariate 
analysis of variance was performed using Prism 9.0. 
Differences were considered statistically significant 
at *p<0.05, **p<0.01 and **p<0.001.

RESULTS AND DISCUSSION
The active components of GPH derived from 
Traditional Chinese Medicine (TCM), were screened 
meticulously. After eliminating duplicates, 15 
active ingredients and 136 target genes that fulfilled 
the selection criteria were identified. The active 
pharmaceutical ingredients are listed in Table 2.

GC-related targets were identified through searches 
of the GeneCards and OMIM databases, yielding 
13 838 and 168 unique targets respectively, after 
duplicates were removed. Venn software facilitated 
the amalgamation of targets from both GeneCards 
and OMIM culminating in a comprehensive list of 
13 838 GC-related targets. By analyzing the overlap 
between these GC-related targets and the targets of 
GPH's active ingredients, 127 potential targets for 
therapeutic intervention in GC were identified, as 
illustrated in fig. 2.

PCR master mix (Low ROX) kit, cDNA was amplified 
and a Roche LightCycler 480 (Roche Diagnostics, 
Basel, Switzerland) was used. The relative expression 
of target genes was calculated by the 2-ΔΔCt method. 
The PCR primer sequences are listed in Table 1.

Western blot: SGC7901 GC cells (1×106) were 
seeded into 100 cm diameter culture dishes. Fresh 
culture medium containing quercetin (49.55 μm) 
and rhamnetin (38.73 μm) was added to the dishes 
and incubated for 48 h. Cells were collected by 
washing with cold Phosphate-Buffered Saline 
(PBS) and scraping. Cells were lysed on ice 
using lysis buffer (Shanghai, China). The protein 
concentration was determined using a Bromocresol 
Green Albumin (BCA) protein assay kit (KeyGEN 
BioTECH, Jiangsu, China). Equal amounts of 
protein were loaded onto 10 % sodium dodecyl 
sulfate-polyacrylamide gel electrophoresis gels 
and subsequently transferred onto polyvinylidene 
fluoride membranes. The membranes were blocked 
with 5 % non-fat milk for 1 h and incubated overnight 
at 4° with primary antibodies. After washing thrice 
with Tris-Buffered Saline, 0.1 % Tween 20 (TBS-T) 
solution (10 min each time), the membranes were 
incubated with secondary antibody (1:2000) for 1 
h. After three washes with TBS-T (10 min each), 
the blots were visualized using an Enhanced 
Chemiluminescence (ECL) kit (GE Healthcare 
Life Sciences, Marlborough, MA, USA). Images 
were captured using a ChemiDoc XRS+Imaging 
System (Bio-Rad, Hercules, CA, USA). Anti-AKT 
serine/threonine kinase 1 (AKT1) (80816-1-RR, 
1:10000), anti-Jun proto-oncogene (JUN) (222114-
1-AP, 1:600) and anti-B-Cell Lymphoma 2 (BCL2) 
(68103-1-Ig, 1:10000) antibodies were purchased 

Genes Sequence (5'-3')

AKT1
F: ACTGTCATCGAACGCACCTT

R: CTCCTCCTCCTCCTGCTTCT

JUN
F: GTGCCGAAAAAGGAAGCTGG

R:  GCTGCGTTAGCATGAGTTGG

BCL2
F: GGTGAACTGGGGGAGGATTG

R: ATCCCAGCCTCCGTTATCCT

GAPDH
F: GGAGCGAGATCCCTCCAAAAT

R: GGCTGTTGTCATACTTCTCATGG

TABLE 1: CLINICAL INFORMATION OF THE TWO GROUPS
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This facilitated the construction of the network and 
its topological analysis, thereby identifying critical 
targets within the network. Using DC as the selection 
criterion, AKT1, JUN, BCL2, IL6, Myelocytomatosis 
oncogene (MYC) and Fos proto-oncogene (FOS) 
were identified as pivotal targets of GPH in GC 
treatment (fig. 4A-fig. 4C).

Utilizing the DAVID database, a comprehensive 
analysis yielded 2027 processes with 1892 pertaining 
to BP. The identified targets were predominantly 
engaged in responses to oxidative stress, epithelial 
cell proliferation and cellular responses to chemical 
stress. Concerning CC, 37 entries were noted, 

The network diagram illustrating the "GPH-active 
ingredient-target-GC" interactions for GPH's 
therapeutic approach to GC was constructed utilizing 
Cytoscape 3.8.2, as depicted in fig. 3. This diagram 
features 144 nodes and 312 edges, highlighting 
GPH's multifaceted and targeted strategy of the GPH 
to combat GC. 

The shared targets of GPH and GC were examined 
using the STRING database to assemble a PPI 
network. After downloading the data and PPI 
network diagram, where nodes symbolized proteins 
and edges delineated the interactions among them, 
the findings were imported into Cytoscape 3.8.2. 

MOL ID Molecule name OB (%) DL

MOL000338 3'-methyleriodictyol 51.61 0.3

MOL000351 Rhamnazin 47.14 0.3

MOL000359 Sitosterol 36.91 0.8

MOL004350 Ruvoside_qt 36.12 0.8

MOL004355 Spinasterol 42.98 0.8

MOL005438 campesterol 37.58 0.7

MOL005440 Isofucosterol 43.78 0.8

MOL000953 CLR 37.87 0.7

MOL000098 Quercetin 46.43 0.3

MOL009855 (24S)-ethylcholesta-5,22,25-
trans-3beta-ol 46.91 0.8

MOL009867 4α,14α-dimethyl-5α-ergosta-
7,9(11),24(28)-trien-3β-ol 46.29 0.8

MOL009877 Cucurbita-5,24-dienol 44.02 0.7

MOL009878 Cyclobuxine 84.48 0.7

MOL009971 Gypenoside XXVII_qt 30.21 0.7

MOL009973 Gypenoside XXVIII_qt 32.08 0.7

TABLE 2: ACTIVE PHARMACEUTICAL INGREDIENTS OF GPH

Fig. 2: Venn diagram of the targets of GPH and GC 
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bubble charts in fig. 5B. In addition, we showed the 
distribution of GC pathways (fig. 6A and fig. 6B). 

Analysis of TCGA database indicated that the mRNA 
levels of AKT1, IL6 and MYC were significantly 
higher in GC tissues, with JUN, BCL2 and FOS 
being expressed at low levels (fig. 7A). Furthermore, 
we explored the association between mRNA levels of 
key targets, the pathological stage and OS in GC. The 
findings showed that IL-6 and BCL2 levels varied 
with the disease stage (fig. 7B). Elevated levels of 
IL-6 and FOS were associated with worse outcomes 
in patients with GC (p<0.05; fig. 7C). Additionally, 
data from the HPA database demonstrated the 
differential expression of major target proteins in 
normal stomach tissues. In GC tissues, the protein 
expression levels of AKT1 and MYC were higher 
than those in normal gastric tissues, whereas JUN 
and FOS showed reduced expression levels (fig. 8).

focusing mainly on aspects such as the RNA 
polymerase II transcription regulator complex and 
vesicle lumen. For MF, 142 entries were identified, 
primarily involving interactions with DNA-
binding transcription factors, RNA polymerase II-
specific DNA-binding transcription factor binding, 
transcription co-regulator binding, nuclear receptor 
activity, ligand-activated transcription factor activity 
and transcription co-activator binding. The top 
six entries from the BP, CC and MF were selected 
for depiction, as shown in fig. 5A. Moreover, 170 
signalling pathways were identified that were 
primarily associated with cancer, viral infections 
and inflammation-related pathways, including 
those related to GC, breast cancer, Epstein-Barr 
virus infection, Advanced Glycation End products-
Receptor for Advanced Glycation End products 
(AGE-RAGE) signalling, Interleukin (IL)-17 
signalling and Hypoxia-Inducible Factor 1 (HIF-1) 
signalling. The top 30 pathways are presented as 

Fig. 3: Network construction of GPH active components-GC targets

Fig. 4: Analysis of the target protein–protein interaction network in GPH treatment of GC
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Fig. 6: Pathways in gastric cancer

Fig. 5: GO and KEGG enrichment analysis of targets in the treatment of GC using GPH

A B
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Fig. 7: mRNA expression and overall survival of key genes in the TCGA database

Fig. 8: Analysis of protein expression levels of key targets in HPA databases
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GC cell line SGC7901 in a concentration-dependent 
manner, with a median Inhibitory Concentration 
(IC50) of 49.55 μm and 38.73 μm, respectively (fig. 
10C and fig. 10D).

The effects of quercetin and rhamnetin on the mRNA 
expression of AKT1, JUN and BCL2 in SGC7901 
cells were assessed using RT-PCR. Relative to the 
control group, the mRNA expression of AKT1, 
JUN and BCL2 was significantly reduced after 48 
h of exposure to the designated concentrations of 
quercetin and rhamnetin (fig. 11A-fig. 11F). To 
corroborate the RT-PCR results, Western blotting 
was performed to examine the protein expression 
levels of AKT1, JUN and BCL2. Fig. 11G and fig. 
11H illustrate that, compared to the control group, 
treatment with quercetin and rhamnetin for 48 h in 
SGC7901 cells resulted in an upregulation of AKT1 
protein expression, whereas the expression levels of 
JUN and BCL2 proteins were markedly decreased.

Molecular docking techniques were used to evaluate 
the binding affinities of quercetin and rhamnetin, 
the principal active compounds of GPH to their 
central targets. Using PyMOL software, the binding 
orientation and interactions between quercetin and 
rhamnetin with key targets, such as AKT1, JUN and 
BCL2, were meticulously analyzed and the binding 
energies for each interaction were calculated. Lower 
binding energies indicate enhanced the stability of 
the ligand-receptor complex. The docking results 
were visualized using PyMOL software, culminating 
in a detailed molecular docking model depicting the 
interactions (fig. 9).

First, we acquired the molecular structures of 
quercetin and rhamnazin from MCE's official website 
(fig. 10A and fig. 10B). We then used the MTS test 
to investigate the effects of various drug doses on 
the activity of GC cells. The findings revealed that 
quercetin and rhamnazin inhibited the activity of 

Fig. 9: Molecular docking of the active components with key targets
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Fig. 10: The effects of quercetin and rhamnetin on SGC7901 cells and normal cell activity

Fig. 11: Effects of quercetin and rhamnazin on mRNA and protein expressions of AKT1, JUN and BCL2 in GC cells
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with the grade of GC. Consequently, it enhanced 
cell proliferation and inhibited programmed cell 
death[38]. IL-6 is highly upregulated in many cancers, 
making it one of the most crucial cytokines in the 
oncogenesis and metastasis of tumors[39]. Moreover, 
high IL-6 expression serves as a biomarker for poor 
prognosis[40]. Additionally, it can effectively control 
pathological changes in cancer by mediating the 
expression of IL-6 in the IL-17 signaling pathway[41]. 
We found that high expression of IL-6 was associated 
with significantly lower survival rates, according to 
the TCGA database. 

GO enrichment analysis indicated that GPH treatment 
of GC is involved in multiple BP, including responses 
to oxidative stress, epithelial cell proliferation 
and cellular responses to chemical stress. KEGG 
pathway enrichment analysis suggested that the 
mechanisms by which GPH treats GC may involve 
key pathways, such as GC, breast cancer, Epstein-
Barr virus infection, AGE-RAGE signalling, IL-
17 signalling and HIF-1 signalling pathways. 
During tumorigenesis, reprogramming of cell death 
mechanisms through AGE-RAGE signal transduction 
is intriguing for understanding the complex signal 
transduction mechanisms in cancer cells[42]. The IL-
17 cytokine family and its receptors are critical for 
immune responses and the dysregulation of their 
expression is associated with inflammation and 
cancer[43]. The HIF signalling pathway accelerates 
GC progression by regulating several genes that 
affect GC cell proliferation, metastasis, apoptosis and 
angiogenesis. Notably, HIF-1α enhances GC invasion 
and metastasis by inducing epithelial-mesenchymal 
transition. HIF-1α is not only a potential mediator in 
the development of GC but also correlates with the 
severity of GC and poor prognosis[44,45].

Further molecular docking and analysis were 
conducted on candidate targets with higher degree 
values in the core PPI network, namely, AKT1, 
JUN and BCL2. The results demonstrated that these 
three core targets exhibit good binding stability to 
quercetin and rhamnetin. These results are similar to 
the findings of studies conducted by Ning et al.[45], 
Liu et al.[46] and Wang et al.[47]. Additionally, in vitro 
experiments demonstrated the inhibitory effects of 
quercetin and rhamnetin on GC cell activity and 
validated target regulation by molecular docking, 
further confirming the stable binding of quercetin 
and rhamnetin to the targets AKT1, JUN and BCL2. 
These findings may reveal part of the mechanism by 

In recent years, the incidence and mortality of GC have 
gradually increased and are related to diet, lifestyle, 
genetics and other factors. Most patients with GC have 
a poor prognosis owing to the possibility of distant 
metastasis and recurrence[3]. In the present study, we 
used a comprehensive approach combining network 
pharmacology and molecular docking to investigate 
the role of GPH in the treatment of GC. This study is 
the first to reveal the inhibitory effect of core active 
ingredients, such as quercetin and rhamnazin, on 
the activity of GC cells and that the regulation of 
core targets may reveal its anticancer mechanism. 
This finding provides experimental validation of its 
potential application in the treatment of GC. The 
pharmacological effects and complex mechanisms of 
TCM, characterized by its multi-component, multi-
target and multi-pathway interactions have become a 
focal point in the research on Chinese medicine for 
cancer treatment[31]. 

We utilized network pharmacology to compile the 
active components of GPH and their targets, as well 
as the disease targets of GC, from relevant databases. 
GPH shares 127 common targets with GC, of which 
quercetin and rhamnetin have been identified as the 
principal core components. Research has found that 
flavonoids, phytosterols and saponins, including 
quercetin and rhamnetin, are the active components 
of GPH used in the treatment of coronary heart 
disease[32]. Additionally, studies have explored the 
mechanisms by which GPH treats atherosclerosis 
using network pharmacology[33]. These results indicate 
that quercetin is one of the most effective targets of the 
many active components of GPH, which is consistent 
with the findings of this study. Furthermore, the PPI 
network analysis in our study highlighted AKT1, 
JUN, BCL2, IL-6, MYC and FOS as key targets, 
demonstrating that their highly efficient interactions 
are primarily involved in inflammatory responses 
and cancer pathways. AKT1 is a serine/threonine-
specific protein kinase that is pivotal in a wide 
array of BP, including glucose metabolism, cellular 
proliferation, apoptosis and migration[34,35]. As an 
enzymatically active kinase, AKT1 is instrumental 
in driving the advancement of GC and facilitating 
the proliferation of GC cells, thus underscoring its 
significance in cancer progression[36]. The oncogene 
JUN, a component of the AP-1 transcription factor 
complex, plays a pivotal role in regulating cell cycle 
progression, apoptosis and cell differentiation[37]. 
BCL2 is an oncogene whose expression increases 
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which GPH treats GC; however, the specific complex 
mechanisms require further investigation.

However, this study has some limitations. First, our 
approach for identifying therapeutic targets relies 
on network pharmacology and molecular docking, 
which depend on existing databases and the known 
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In summary, our study demonstrated that GPH, 
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