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Zhao et al.: Effect of Cornus officinalis Extracts on Alzheimer's Disease Cell Injury Models

To explore the protective effect of Cornus officinalis extracts on Alzheimer’s disease cell injury models and its 
underlying molecular mechanism. Pheochromocytoma cells were treated with 20 μM amyloid beta-peptide 
25-35 to establish an Alzheimer’s disease cell injury model in vitro, which was recorded as amyloid beta-
peptide 25-35 group. Cells affected by amyloid beta-peptide 25-35 were treated with different-doses of Cornus 
officinalis extracts and recorded as low-dose Cornus officinalis extracts group, medium-dose Cornus officinalis 
extracts group and high-dose Cornus officinalis extracts group. Pheochromocytoma cells transfected with si-
NC/si-long non-coding RNA Rpph1, treated with 20 μM amyloid beta-peptide 25-35 and 80 mg/ml of Cornus 
officinalis extracts were recorded as high-dose Cornus officinalis extracts+si-NC group, high-dose Cornus 
officinalis extracts+si-long non-coding RNA Rpph1 group. Cell viability and apoptosis were examined using 
cell counting kit-8 assay and flow cytometry. Protein expression was tested by Western blot. Malondialdehyde, 
superoxide dismutase and catalase levels were assessed by measuring cell oxidative stress. Amyloid beta-
peptide, tumor necrosis factor-alpha, interleukin-6 and interferon gamma levels were examined using enzyme-
linked immunosorbent assay. Long non-coding RNA Rpph1 expression was detected using quantitative reverse 
transcriptase polymerase chain reaction. Amyloid beta-peptide 25-35 treatment decreased pheochromocytoma 
cell viability, Cyclin D1, superoxide dismutase, catalase and long non-coding RNA Rpph1 levels, while 
increased apoptosis rate, cleaved-caspase-3, malondialdehyde, amyloid beta-peptide, tumor necrosis factor-
alpha, interleukin-6 and interferon gamma levels. After treatment with different-doses of Cornus officinalis 
extracts, cell viability, Cyclin D1, superoxide dismutase, catalase and long non-coding RNA Rpph1 levels 
were enhanced, while apoptosis rate, cleaved-caspase-3, malondialdehyde, Aβ, tumor necrosis factor-alpha, 
interleukin-6 and interferon gamma levels were reduced in pheochromocytoma cells treated with amyloid 
beta-peptide 25-35. Downregulation of long non-coding RNA Rpph1 reversed the inhibitory effect of Cornus 
officinalis extracts on cell injury. Cornus officinalis extracts relieved amyloid beta-peptide 25-35-induced nerve 
cell injury by upregulating long non-coding RNA Rpph1, suggesting that Cornus officinalis extracts might be 
used in Alzheimer's disease treatment.
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Alzheimer’s Disease (AD), a chronic degenerative 
neurological disease, is the most common type of 
dementia in the elderly[1,2]. Clinically, AD is often 
characterized by the deterioration of cognitive 
and memory functions, accompanied by mental 
abnormalities and social life dysfunction[3,4]. 
AD incidence has increased significantly with 
the progress of population aging, which brings a 
huge burden to society[5,6]. Therefore, developing 

effective therapeutic drugs for AD has become a 
global research focus.
Traditional Chinese Medicine (TCM) has the 
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effect of preventing and treating AD[7,8]. Cornus 
officinalis (CO) is a rare TCM in our country, 
which has antioxidant, anti-inflammatory and 
neuroprotective effects[9,10]. Loganin, an iridoid 
glycoside extracted from CO, had been confirmed 
to improve the cognitive impairment of AD mice 
models[11]. Besides, iridoid glycosides of CO could 
inhibit Tau hyperphosphorylation and aggregation 
by activating protein phosphatase 2A, thus 
preventing neuron loss[12]. Importantly, cornuside 
and gallanthin extracted from CO could reduce 
the activities of ChE and Beta-Amyloid Cleaving 
Enzyme 1 (BACE1)[13], the important enzymes for 
AD progression[14,15]. The above studies suggest 
that CO extracts may have anti-AD effects, but the 
specific effects and mechanisms remain unclear.
Long non-coding RNA (lncRNA) Rpph1 attenuated 
Amyloid Beta-peptide (Aβ) 25-35-induced SH-
SY5Y cell endoplasmic reticulum stress and 
apoptosis[16]. Besides, Rpph1 could improve Aβ-
induced neuronal apoptosis[17]. Thus, lncRNA 
Rpph1 may be an important regulator of AD 
progression. In this, we found that CO could 
inhibit lncRNA Rpph1 expression. However, 
whether CO extracts exert its neuroprotective 
effect by inhibiting lncRNA Rpph1 expression 
remains unclear. Our study aimed to investigate the 
effect of CO extracts on Aβ25-35-induced nerve 
cell injury and whether it was related to lncRNA 
Rpph1 expression.

MATERIALS AND METHODS

Cell culture and treatment:

Pheochromocytoma (PC12) cells (Procell, 
Wuhan, China) were cultured in Roswell Park 
Memorial Institute (RPMI)-1640 medium plus 10 
% Fetal Bovine Serum (FBS) and 1 % penicillin-
streptomycin. Cells were treated with 20 μM 
Aβ25-35 (Sigma-Aldrich, St. Louis, MO, United 
States of America (USA)) for 24 h to record as 
Aβ25-35 group. Cells treated with Aβ25-35 and 
different-doses (20, 40 and 80 mg/ml) of CO 
extracts (KINGREEN, Xian, China) were recorded 
as low-dose CO extracts group, medium-dose CO 
extracts group and high-dose CO extracts group. 
Cells were transfected with si-NC/si-LncRNA 
Rpph1, treated with 20 μM Aβ25-35 and 80 mg/ml 
CO extracts, which were recorded as high-dose CO 
extracts+si-NC group, high-dose CO extracts+si-
LncRNA Rpph1 group.

Cell Counting Kit-8 (CCK-8) assay:

PC12 cells in each group were re-seeded in 96-
well plates. Following, cells were incubated with 
CCK-8 reagent (Dojindo, Kumamoto, Japan) and 
Absorbance (A) value was tested by microplate 
reader to assess cell viability.

Flow cytometry:

Collected PC12 cells were dyed by Annexin V/
Fluorescein Isothiocyanate (FITC) and Propidium 
Iodide (PI) (Abcam, Cambridge, MA, USA). Cell 
apoptosis rate was examined under flow cytometer.

Western blot:

Protein samples isolated from PC12 cells were 
separated and transferred to Polyvinylidene 
Difluoride (PVDF) membranes, followed by 
incubated with anti-Cyclin D1 (1:200, ab16663), 
anti-cleaved-caspase-3 (1:1000, ab2302), anti-β-
actin (1:200, ab115777) and secondary antibody 
(1:2000, ab205718). Protein signals were 
examined by Enhanced Chemiluminescence (ECL) 
reagent (Beyotime, Shanghai, China), ChemiDoc 
XRS+imaging system and Quantity One software.

Measurement of oxidative stress:

Malondialdehyde (MDA), Superoxide Dismutase 
(SOD) and Catalase (CAT) levels in PC12 cells 
were tested by MDA assay kit (ab118970, Abcam), 
SOD activity assay kit (ab65354, Abcam) and CAT 
activity assay kit (ab83464, Abcam) according to 
kit instructions, respectively.

Enzyme-Linked Immunosorbent Assay 
(ELISA):

Aβ, Tumor Necrosis Factor-Alpha (TNF-α), 
Interleukin (IL)-6 and Interferon Gamma (IFN-γ) 
levels in PC12 cells were analyzed by Aβ ELISA 
kit (JL10958-48T, Jianglai, Shanghai, China), 
TNF-α ELISA kit (JL13202-48T, Jianglai), IL-6 
ELISA kit (JL20896-48T, Jianglai) and IFN-γ 
ELISA kit (JL13241-48T, Jianglai), respectively.

Reverse Transcriptase quantitative Polymerase 
Chain Reaction (RT-qPCR):

Extracted Ribonucleic Acid (RNAs) from 
PC12 cells was reverse-transcribed into 
complementary Deoxyribonucleic Acid 
(cDNA). SYBR Green was used for PCR with 
specific primers as below. LncRNA Rpph1, 
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forward: 5'-CGAGCTGAGTGCGTCCTGTC-3', 
Reserved: 5'-TCGCTGGCCGTGAGTCTGT-3'; 
Glyceraldehyde 3-Phosphate 
Dehydrogenase (GAPDH), forward: 
5'-ACAGCAACAGGGTGGTGGAC-3', Reserved; 
5'-TTTGAGGGTGCAGCGAACTT-3'. Relative 
lncRNA Rpph1 level was analyzed with the 2−ΔΔCt 
method.

Statistical analysis:

Results were presented as mean±Standard 
Deviation (SD) by Statistical Package for the 
Social Sciences (SPSS) 20.0 software. Differences 
were evaluated by Student’s t-test or Analysis 
of Variance (ANOVA). p<0.05 was considered 
statistically significant.

RESULTS AND DISCUSSION

After Aβ25-35 treatment, PC12 cell viability was 
restrained and apoptosis was enhanced. Under the 
treatment of CO extracts, PC cell viability was 
increased and apoptosis was inhibited (fig. 1 and 
Table 1). Aβ25-35 treatment decreased Cyclin 

D1 level and improved cleaved-caspase-3 level. 
However, CO extracts markedly enhanced Cyclin 
D1 level and reduced cleaved-caspase-3 level in 
Aβ25-35-induced PC12 cells (fig. 2 and Table 2). 

Aβ25-35 treatment promoted MDA level, while 
decreased SOD and CAT levels in PC12 cells. 
However, MDA level was reduced, while SOD and 
CAT levels were enhanced with the increasing of 
CO extracts (Table 3). Aβ25-35 treatment enhanced 
Aβ, TNF-α, IL-6 and IFN-γ levels in PC12 cells, 
while CO extracts reduced their levels in Aβ25-35-
induced PC12 cells (Table 4). Aβ25-35 treatment 
reduced lncRNA Rpph1 expression in PC12 cells, 
while CO extracts could promote lncRNA Rpph1 
expression in a dose-dependent manner (Table 5). 

In High-dose CO extracts+si-LncRNA Rpph1 
group, lncRNA Rpph1 expression, Cyclin D1 
level, cell viability, SOD and CAT levels were 
reduced, while cleaved-caspase-3 level, apoptosis 
rate, MDA, Aβ, TNF-α, IL-6 and IFN-γ levels were 
increased (fig. 3 and Table 6). 

Fig. 1: Flow cytometry for detecting cell apoptosis

TABLE 1: CO EXTRACTS REGULATED Aβ25-35-INDUCED PC12 CELL VIABILITY AND APOPTOSIS
Group A value Apoptosis rate %

NC 0.902±0.07 7.12±0.34

Aβ25-35 0.448±0.03* 25.41±1.52*

Low-dose CO extracts 0.593±0.03# 21.35±1.25#

Medium-dose CO extracts 0.763±0.05# 14.81±1.03#

High-dose CO extracts 0.851±0.07# 9.43±0.52#

F 113.200 507.325

P 0.000 0.000

Notes: *P<0.05 to NC group and #P<0.05 to Aβ25-35 group
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Fig. 2: Western blot for detecting Cyclin D1 and cleaved-caspase-3 levels

Groups Cyclin D1 Cleaved-caspase-3

NC 0.83±0.05 0.32±0.02

Aβ25-35 0.42±0.02* 0.91±0.07*

Low-dose CO extracts 0.57±0.03# 0.70±0.05#

Medium-dose CO extracts 0.71±0.05# 0.52±0.03#

High-dose CO extracts 0.78±0.05# 0.37±0.02#

F 142.517 293.39

P 0.000 0.000

Notes: *P<0.05 to NC group and #P<0.05 to Aβ25-35 group

TABLE 2: DIFFERENT DOSES OF CO EXTRACTS REGULATED Cyclin D1 AND CLEAVED-CASPASE-3 
LEVELS

Group MDA (μmol/g) SOD (U/mg) CAT (U/mg)

NC 18.12±1.01 12.13±0.86 10.56±0.71

Aβ25-35 34.25±2.17* 4.16±0.21* 4.89±0.27*

Low-dose CO extracts 30.13±1.23# 7.13±0.46# 6.07±0.41#

Medium-dose CO extracts 24.81±1.11# 10.05±0.73# 8.27±0.61#

High-dose CO extracts 21.06±1.24# 11.91±0.81# 9.48±0.53#

F 193.840 238.263 177.890

P 0.000 0.000 0.000

Notes: *P<0.05 to NC group and #P<0.05 to Aβ25-35 group

TABLE 3: CO EXTRACTS REGULATED MDA, SOD AND CAT LEVELS

Group Aβ (ng/l) TNF-α (ng/l) IL-6 (ng/l) IFN-γ (ng/l)

NC 283.16±15.13 75.46±4.12 35.69±2.16 15.67±1.02

Aβ25-35 427.32±22.56* 179.26±11.26* 80.57±5.14* 45.97±3.14*

Low-dose CO extracts 383.72±18.49# 151.02±10.43# 61.27±4.86# 38.93±3.07#

Medium-dose CO 
extracts 327.17±21.43# 114.06±9.16# 48.62±3.19# 27.53±1.55#

High-dose CO extracts 298.52±18.83# 90.27±4.13# 39.02±1.76# 19.71±1.05#

F 86.581 234.117 222.217 307.410

P 0.000 0.000 0.000 0.000

Notes: *P<0.05 to NC group and #P<0.05 to Aβ25-35 group

TABLE 4: EFFECTS OF CO EXTRACTS ON Aβ AND INFLAMMATION
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reported that IL-6, TNF-α, IL-1β, IFN-γ and MDA 
levels were elevated, while SOD and CAT levels 
were reduced in AD models[25,26]. In this, PC12 
cell viability was decreased, while cell apoptosis, 
oxidative stress, inflammation and Aβ level were 
increased under Aβ25-35 treatment. Therefore, AD 
cell injury model was successfully established in 
this study. 

Ethanol extract of CO protected keratinocytes from 
oxidative stress caused by particulate matter[27]. 
Iridoid glycosides of CO had been confirmed 

With the increasing number of AD patients, 
more and more attention has been paid to AD 
pathogenesis. AD development is not completely 
clear, mainly involving excessive deposition 
of Aβ, hyper phosphorylation of Tau protein, 
cholinergic dysfunction, inflammatory response, 
oxidative stress and apoptosis[18-20]. Studies have 
found that the AD in vitro cell model can be 
simulated by inducing PC12 cell injury with Aβ25-
35[21,22]. MDA, SOD and CAT are oxidative stress-
related factors[23] and TNF-α, IL-6 and IFN-γ are 
pro-inflammatory-related factors[24]. It had been 

Groups LncRNA Rpph1

NC 1.00±0.10

Aβ25-35 0.41±0.02*

Low-dose CO extracts 0.61±0.03#

Medium-dose CO extracts 0.79±0.05#

High-dose CO extracts 0.94±0.07#

F 141.618

P 0.000

Notes: *P<0.05 to NC group and #P<0.05 to Aβ25-35 group

TABLE 5: CO EXTRACTS ENHANCED LNCRNA RPPH1 EXPRESSION

Fig. 3: Western blot for testing Cyclin D1 and cleaved-caspase-3 expression

Group LncRNA 
Rpph1

Cyclin 
D1

Cleaved-
caspase-3

A 
value

Apoptosis 
rate (%)

MDA 
(μmol/g)

SOD  
(U/mg)

CAT  
(U/mg)

Aβ  
(ng/l)

TNF-α  
(ng/l)

IL-6  
(ng/l)

IFN-γ  
(ng/l)

High-
dose CO 
extracts+si-
NC

1.00± 
0.07

0.78± 
0.05

0.38± 
0.02

0.857± 
0.05

9.31± 
0.67

21.11± 
1.32

11.88± 
0.71

9.42± 
0.69

291.52± 
15.41

88.37± 
5.12

39.46± 
2.04

19.49± 
1.15

High-
dose CO 
extracts+si-
LncRNA 
Rpph1

0.48± 
0.02*

0.40± 
0.02*

0.86± 
0.07*

0.438± 
0.03*

26.81± 
1.54*

36.54± 
2.47*

5.43± 
0.35*

4.20± 
0.31*

407.10± 
28.13*

184.29± 
10.44*

83.25± 
6.73*

48.76± 
2.91*

t 21.428 21.169 19.780 21.557 31.261 16.529 24.445 20.702 10.811 24.747 18.681 28.063

P 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

Notes: *P<0.05 to NC group and #P<0.05 to Aβ25-35 group

TABLE 6: LNCRNA RPPH1 KNOCKDOWN REVERSED THE EFFECT OF CO EXTRACTS ON CELL INJURY
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to repress the production of pro-inflammatory 
factors[28]. Cornuside, an iridoid glycoside from 
CO, could significantly reduce TNF-α, IL-6 and 
MDA levels in AD mice models[29]. These results 
indicate that CO extracts have obvious antioxidant 
and anti-inflammatory effects. To investigate 
whether CO extracts played a negative role in 
AD, PC12 cells were treated with Aβ25-35 and 
CO extracts. The results suggested that MDA, Aβ, 
TNF-α, IL-6 and IFN-γ levels were suppressed, 
while SOD and CAT levels were improved 
by CO extracts, indicating that CO extracts 
inhibited Aβ25-35-induced oxidative stress and 
inflammation in PC12 cells. Additionally, iridoid 
glycosides of CO had neuroprotective effects on 
traumatic brain injury by inhibiting apoptosis and 
promoting nerve repair[30]. Our data confirmed 
that CO extracts promoted PC12 cell viability and 
reduced apoptosis under Aβ25-35 treatment.

Aberrant expression of lncRNA Rpph1 has been 
implicated in human disease progression. For 
example, lncRNA Rpph1 was overexpressed 
in colorectal cancer, which could enhance cell 
proliferation and metastasis[31]. Also, high lncRNA 
Rpph1 was confirmed to promote hepatocellular 
carcinoma malignancy progression by increasing 
cell growth and metastasis[32]. LncRNA Rpph1 
has been shown to restrain the apoptosis of nerve 
cells[16,17], indicating that it may participate in 
regulating AD progression. In this, we observed 
low lncRNA Rpph1 expression in PC12 cells after 
induced by Aβ25-35 and confirmed the increasing 
effect of CO extracts on lncRNA Rpph1 expression. 
Moreover, the reversal effect of lncRNA Rpph1 
knockdown on CO extracts-mediated cell injury 
inhibition confirmed that CO extracts increased 
lncRNA Rpph1 expression to suppress Aβ25-35-
induced PC12 cell injury. 

In conclusion, our study reveals a novel molecular 
mechanism by which CO extracts inhibited AD 
progression. This study suggested that CO extracts 
might relieve Aβ25-35-induced nerve cell injury 
by up regulating lncRNA Rpph1. These results 
provide new evidence for the use of CO extracts in 
AD treatment and show that lncRNA Rpph1 may 
be a potential therapeutic target for AD.
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