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Sheng et al.: Role of Diagnostic Alternative in Treating Liver Tumor

Drugs play an indispensable role in treating liver tumors nowadays. Meanwhile, liver tumors present a 
significant health challenge, demanding accurate diagnostic tools that are safe for all patients, including those 
with iodine allergies in pharmacy or renal insufficiency. Addressing the limitations of traditional contrast-
enhanced computed tomography scans, we introduce plain scan liver tumors dataset and a new model based on 
the unit model (YNetr model), which is named for its resemblance to a Y rotating counterclockwise. The YNetr 
model is the plain scan liver tumors dataset consists of multiple liver tumor plain scan segmentation datasets, 
meticulously assembled and annotated. Our innovation, the YNetr model, leverages wavelet transforms to 
extract varied frequency information, aiming to enhance diagnostic accuracy without the need for contrast 
agents. This model achieved a remarkable dice coefficient of 62.63 % on the plain scan liver tumors dataset, 
outperforming existing models by 1.22 %. Our comprehensive comparison included models like UNet 3+XNet, 
UNetr, and more, highlighting YNetr’s superior capability in non-contrast liver tumor segmentation. This 
breakthrough not only provides a safer diagnostic alternative but also improves the effectiveness of drug 
treatments, demonstrating the vital role of technological innovations in improving patient treatment and 
safety.

Key words: Plain scan liver tumors dataset, segmentation, artificial intelligence, dual-encoder, wavelet, 
computed tomography

Computed Tomography (CT) is a diagnostic 
technique that uses precisely collimated X-ray beams 
and highly sensitive detectors to perform sectional 
scans around a specific part of the human body. This 
method is characterized by its rapid scanning time 
and clear images. It can be applied to scan various 
parts of the body and holds immense clinical value 
for disease diagnosis. CT scans are increasingly used 
for abdominal diseases, primarily for diagnosing 
conditions related to the liver, gallbladder, pancreas, 
spleen, peritoneal cavity, retroperitoneal space, and 
the urinary and reproductive systems. They are 
particularly useful for diagnosing space-occupying 
lesions, inflammatory and traumatic changes.

Liver tumors refer to neoplasms occurring in the 
liver, which can be benign or malignant. Malignant 
liver tumors mainly include primary and secondary 
liver cancers, along with other malignancies like 

hepatoblastoma and sarcoma. Benign liver tumors 
include hemangioma, adenoma, and focal nodular 
hyperplasia.

Various diagnostic methods are available for liver 
tumors, such as ultrasound, CT, Magnetic Resonance 
Imaging (MRI), and even Positron Emission 
Tomography (PET)-CT. Currently, CT is the most 
widely used due to its ability to display liver cross-
sections every (0.5-1) cm, avoiding overlap from 
different angles of the liver. This technique reveals 
tumors and lesions within the liver, including 
their location, size, shape and relationship with 
surrounding tissues. CT enhancement is performed 
for further clarification when the nature of a lesion is 
difficult to determine.

In medical field, when a patient exhibits liver function 
abnormalities, employing CT scan to determine 
the type of liver disease is crucial. However, with 
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the increasing workload on physicians, manually 
identifying liver tumors using visual inspection is 
extremely time-consuming. To save the diagnostic 
time, doctors can utilize artificial intelligence to 
segment lesions, aiding in diagnosis. Particularly 
in an era where deep learning is rapidly advancing, 
the effectiveness of artificial intelligence has been 
notably demonstrated. This has further propelled 
the application of artificial intelligence in medical 
imaging diagnostics.

In Contrast-Enhanced (CE) CT scans, iodine-based 
contrast agents are typically used, which can pose 
risks for certain patients, such as those with allergies 
to iodine or with renal insufficiency. On the other 
hand, plain CT scan, as a diagnostic method that 
does not require contrast agents and is a safer option 
for these patients. Here is more information about 
iodine-based contrast agents.

Iodine-based contrast agents, such as iodixanol are 
widely used in medical imaging, particularly in 
enhanced CT scans. They work by increasing the 
contrast between blood vessels and surrounding 
tissues, aiding doctors in observing and diagnosing 
conditions more clearly. Despite their critical role 
in medical diagnostics, iodine-based contrast agents 
can also bring certain risks and side effects.

A small percentage of patients may have an allergy 
to iodixanol or other iodine-based contrast agents, 
which could lead to rashes, urticaria, and in severe 
cases, anaphylactic shock. 

For patients with pre-existing kidney issues, the 
use of iodine-based contrast can exacerbate renal 
strain, sometimes even leading to Acute Kidney 
Injury (AKI). Hence, kidney function is usually 
assessed before administering iodine-based contrast 
agents. Other potential side effects were also 
observed. Though less common, some patients might 
experience nausea, vomiting, headaches, or changes 
in taste after undergoing a CT scan with iodine-based 
contrast.

To mitigate these risks, physicians typically evaluate 
patient’s medical history for allergies and assess 
kidney function before proceeding with iodine-based 
contrast agents. In cases where the risk is deemed too 
high, alternative diagnostic methods, such as plain 
scan CT or MRI without contrast, may be considered 
to ensure patient safety.

However, in existing studies, all research on Liver 

Tumor Segmentation (LITS) is based on CECT LITS, 
with the LITS[1] dataset and related algorithms (such 
as nnU-Net[2]) being prominent examples. Despite 
this, research on plain scan CT, LITS remains 
limited, even though it holds clinical significance. 
Specifically, the clinical significance of plain scan 
CT, LITS are more as mentioned below.

Advantage of avoiding contrast agents CECT scans 
typically require iodine-based contrast agents, which 
can pose risks for certain patients (such as those with 
iodine allergies or renal insufficiency). Plain scan CT, 
as a diagnostic method that does not require contrast 
agents, is a safer choice for these patients.

Compared to enhanced scans, plain scan CT is 
generally less expensive and simpler to operate. 
In resource-limited areas (such as primary care 
hospitals) or in emergency situations, plain scan CT 
might be a more practical or faster option.

When the patients exhibit no obvious symptoms, 
plain scan CT can be used for early detection and 
monitoring of liver tumors.

Furthermore, developing algorithms capable of 
accurately identifying liver tumors from plain scan 
CT images demonstrates the progress of artificial 
intelligence and machine learning in the field of 
medical imaging. This could pave the way for future 
medical imaging analysis technologies.

From the perspective of existing semantic 
segmentation models, most models have only one 
branch as an encoder and one branch as a decoder[3]. 
In contrast, XNet uses two branches as encoders 
and two branches as decoders to capture features at 
different frequencies of the image and adjust outputs 
for semi-supervised segmentation. However, XNet 
still has its drawbacks, as mentioned below-

XNet uses two branches as decoders, but studies 
have shown that the outputs of XNet’s two branches 
are very similar. Therefore, it is necessary to merge 
the two decoder branches of XNet into one through 
feature fusion. Meanwhile, in semi-supervised tasks, 
using two decoders is justifiable because it allows 
for the comparison and adjustment of the outputs 
from both decoders to accommodate unlabeled 
data. However, in fully supervised tasks, employing 
two decoders is unreasonable. This is because the 
labels are already known, eliminating the need for 
additional adjustments.
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XNet solely relies on Convolutional Neural Network 
(CNN) for feature extraction, which cannot capture 
long-term dependencies. To address this issue, 
considering the use of transformers as feature 
extractors is necessary.

To address these issues, we have developed the first 
plain scan LITS dataset, Plain Scan Liver Tumors 
(PSLT). Additionally, we introduced a model, YNetr, 
featuring two branches as encoders and one branch as 
a decoder. This model achieved a dice coefficient of 
62.63 % (State-Of-The-Art (SOTA)) on our dataset. 
In summary, our contributions are as follows:

To address the gap in plain scan LITS datasets, we 
have developed the first dedicated dataset for this 
purpose, PSLT. It encompasses plain scan data from 
forty distinct patients, totaling 10 923 slices.

We propose a novel model, YNetr, which employs a 
dual-branch architecture as encoders for multi-level 
feature extraction and a singular branch as a decoder 
for feature fusion. Additionally, the vision transformer 
architecture, mirroring the UNETR structure[4,5], is 
utilized within the encoder to capture global features 
of images. The conclusive experimental results 
demonstrate that YNetr achieves SOTA performance 
on the PSLT dataset.

MATERIALS AND METHODS

Proposed dataset PSLT:

Dataset summary: The PSLT dataset consists 
of forty plain scan Three-Dimensional (3D) CT 
volumes collected from forty distinct patients by 
Gong’an County People’s Hospital, Hubei Province. 
This dataset includes a wide variety of cases such as 
abdominal scans, thoracoabdominal scans, tumors in 
different stages. Each volume was comprehensively 

scanned utilizing a SIEMENS CT scanner, ensuring 
consistent imaging quality. The volumes span an 
extensive range, encompassing 145 to 873 slices 
per volume, with each slice boasting a resolution 
of 512×512 pixels. This evidence the remarkable 
high-resolution nature of the PSLT dataset. While 
each volume uniformly includes liver imagery, the 
scanned regions exhibit considerable variation, 
including abdominal and thoracoabdominal scans as 
Table 1 and Table 2. This heterogeneity considerably 
enriches the dataset’s diversity, offering a robust basis 
for various analytical applications. Four illustrative 
examples from the PSLT dataset is showcased in fig. 
1. To ensure patient confidentiality, all data were 
subjected to rigorous anonymization processes and 
received the necessary ethical committee approvals, 
thereby upholding stringent privacy standards. 
For research and development purposes, the PSLT 
dataset was partitioned into two subsets randomly: 
A training set consisting of 28 volumes (7667 slices) 
and a testing set comprising 12 volumes (3256 
slices), as delineated in Table 3. We also show the size 
distribution of liver tumors in fig. 2. This indicates 
that half of the tumors range between 3 cm3 and 25 
cm3, with a more frequent distribution of smaller 
tumors <8 cm3. The prevalence of these smaller 
tumors under 8 cubic centimeters adds complexity to 
the identification of lesions.

Professional data annotation: Due to the complexity 
of 3D medical imaging data, manually annotating 
each frame of 3D medical images is extremely time-
consuming. To enhance the efficiency of annotation, 
we employed semi-automated techniques using 
the 3D Slicer software[6-10]. Specifically, a chief 
physician with >10 y of experience conducted the 
initial annotations using 3D Slicer. 

TABLE 1: COMPARISON OF VARIOUS DATASETS FOR LIVER TUMOR SEGMENTATION

Dataset Plain scan Liver tumor Segmentation Volume number Modality
TCGA-LIHC X √ X 1688 CT/MR
SILVER07 X X √ 30 PT CT
LTSC’08 X √ √ 30 CT
VISCERAL’16 X X √ 60/60 CT/MRI
CHAOS19 X X √ 40/120 CT/MRI
LiTS X √ √ 201 CT
PSLT (Ours) √ √ √ 40 CT

Abdominal Thoracoabdominal

Train set (n=28) 20 8
Test set (n=12) 8 4

TABLE 2: SCAN SITE IN PSLT
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Fig. 1: Four examples of PSLT, the green label represents liver tumor

Fig. 2: Size distribution of liver tumor

Total slices Maximum slices Minimum slices

Train set (n=28) 7667 873 169

Test set (n=12) 3256 571 145

TABLE 3: SCAN SITE IN PSLT

Subsequently, these annotations were reviewed by 
a deputy chief physician with more than 20 y of 
experience. In cases of differing opinions, a consensus 
was reached through discussions involving multiple 
colleagues. The data labeling task will continue until 
the doctors believe there are no issues. During the 
annotation phase, each volume required 0.3 h-0.5 h 
for annotation by the chief physician and 0.05 h-0.2 
h for review by the deputy chief physician, including 
discussions. Overall, approximately 3 mo were 
invested in the collection, annotation, and review of 
the PSLT dataset.

Compared to existing datasets, our dataset is the 
first to focus on non-contrast CT scans for LITS. A 
comparative analysis with other datasets is presented 

in Table 1, illustrating its unique position in the 
current research landscape.

Proposed model YNetr:

Framework overview: The YNetr architecture 
features an anticlockwise Y-shaped. It comprises two 
branches forming the encoder and a single branch 
as the decoder. Each branch utilizes the structure 
of UNETR. Within the encoder, a 1D sequence is 
generated from a 3D input volume(H×W×D×C), where 
(H,W,D) represents the height, width and depth, and 
C denotes the input channels.

This sequence is formed by flattening uniformly 
non-overlapping patches x_v£R(N×(P3.C), where (P,P,P) 
indicates the dimensions of a patch and (N=(H×W×D)/
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H/4×W/4×D/4×256, and H/2×W/2×D/2×128 
respectively.

During the decoder phase (the central line in fig. 5), 
convolutional operations are applied for up sampling 
to restore the image to its original size. Additionally, 
given that the model incorporates two encoders but 
only a single decoder, we opt for additive fusion 
rather than dimensional stacking for skip connections, 
thereby integrating the encoder information into the 
decoder; fig. 6 presents the topological flow chart of 
YNetr.

Loss function:

In our experiments, the loss function is crucial for 
guiding the segmentation task towards optimal 
performance. We have employed a combined dice 
and Cross-Entropy (CE) loss function.

This hybrid loss function leverages the advantages 
of both the dice loss, which is proficient in handling 
class imbalance by measuring overlap, and the CE 
loss, which robustly penalizes incorrect predictions 
on a voxel-wise basis. The formulation of our adopted 
loss function is as follows:

LDice-CE (G,Y)=αLDice (G,Y)+(1-α) LCE (G,Y)

Where, (G) represents the ground truth and (Y) 
denotes the predicted segmentation. The parameter 
Alpha (α) strikes a balance between the two loss 
components. In this case, we define (α) as 1/2 by 
experiments. Specifically, the Dice loss (LDice) is 
defined by:

LDice (G,Y)=1-(2∑i Gi Yi )/( ∑i Gi+∑i Yi)

And CE loss (LCE) is given by,

LCE (G,Y)=-∑i Gi log (Yi)

Here, (i) indices over all voxels, (Gi) denotes the 
ground truth value and (Yi) represents the predicted 
probability for each voxel.

Evaluation metrics:

The evaluation of segmentation models is pivotal to 
our study. To quantitatively assess the performance of 
our proposed model, we employ the Dice coefficient, 
a widely recognized metric for segmentation tasks. 
The Dice coefficient, also known as the Dice 
similarity index, measures the overlap between the 
predicted segmentation and the ground truth. It is 
particularly effective for medical image segmentation 
where binary classification predominates. The Dice 
coefficient is mathematically defined as:

P3) represents the length of the sequence. Different 
from the UNETR framework, the YNetr architecture 
innovatively utilizes a dual-branch encoder to capture 
medical imaging data across varied frequencies.

In a distinctive approach to integrating encoder and 
decoder information, YNetr employs addition as its 
fusion technique, instead of the more conventional 
method of dimensional stacking. This design choice 
facilitates a more seamless and effective integration of 
multi-scale features by capturing different frequency 
information, enhancing the model’s capacity to 
process complex medical images.

Wavelet transform: In the realm of 3D medical 
imaging, data fundamentally represents discrete 
signals encompassing information across various 
frequencies. The wavelet transform is adept at 
segregating this multi-frequency information 
effectively. This transformation is applied to partition 
raw image data into distinct components, namely 
Low Frequency (LF), and High Frequency (HF) in 
three orientations: Horizontal, vertical, and diagonal.
These are technically denoted as R (raw image) for 
LF. H, V, and D are denoted for horizontal, vertical, 
and diagonal HF components, respectively. These 
components capture the low-frequency signals 
along with high-frequency information in different 
orientations. For the comprehensive representation 
of high-frequency data, it is essential to amalgamate 
these directional high-frequency components. The 
formulation of low and high-frequency information 
is delineated as follows:

LF=R

HF=H+V+D

Where, low-frequency information is characterized 
by reduced noise and fewer details, enhancing the 
clarity of the overarching structure. In contrast, the 
high-frequency information provides more noise 
but clearer object boundaries, as depicted in the 
accompanying figure as shown in fig. 3 and fig. 4.

Details of YNetr: To capture the global information 
of an image, each branch of the encoder incorporates 
twelve layers of the UNetr block. Specifically, at the 
3rd, 6th, 9th, and 12th layers, outputs are generated with 
dimensions of H/16×W/16×D/16×768 by unfolding. 

In other layers of the encoder, the output will be taken 
as the input for the next layer in the form of N×(P3.C) 
where (N=(H×W×D)/P3), (P=16) and (C=768). Post 
convolution, these dimensions are transformed 
to H/8×W/8×D/8×512, H/8×W/8×D/8×512, 
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Fig. 5: Overview of YNetr model employing Wavelet transform to extract image information across various frequencies,  
subsequently utilizing the fundamental architecture of UNETR, incorporating dual branches as encoders to extract features which 
integrates this information through a sophisticated fusion process
Note: (  ): Deconv 2×2×2; (  ): Deconv 2×2×2, Conv Deconv 3×3×3; (  ):Conv 3×3×3, BN, ReLU and (  ): Conv 1×1×1, 
YNetr’s name originates from its resemblance to an anticlockwise Y

Fig. 4: High frequency

Fig. 3: Low frequency
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D (G, Y)=2×TP/2×TP+FP+FN

Where, (G) stands for the ground truth binary mask, 
(Y) signifies the predicted segmentation mask, 
True Positives (TP), False Positives (FP) and False 
Negatives (FN).

Implementation details:
The implementation of our YNetr model was 
conducted utilizing the PyTorch framework 
alongside MONAI, a medical open network for AI, 
which provided a robust and flexible platform for our 
deep learning architecture. We used four NVIDIA 
GeForce RTX 3090 graphics cards for training. The 
model optimization was carried out using the AdamW 
optimizer, with the initial learning rate set at 0.0001 
and the training carried out for over 300 epochs. 

Within the encoder module, the patch resolution was 
calibrated to a 16×16×16 matrix. During the inference 
stage, a sliding window approach was employed, and 
the overlap rate was methodically set to 0.5 to ensure 
comprehensive coverage and accuracy. Here, the 
data were segmented into slices of 128×128×128 and 
subsequently fed into the model. 

To circumvent the model’s propensity to learn 
excessively from the background, we maintained 
a balanced ratio of positive to negative samples at 
1:1. Additionally, to mitigate central bias, random 
translations of 48×48×48 blocks were implemented. 

Our conclusive experiments revealed that our model 
achieved a Dice coefficient precision of 62.63 %, 
surpassing the performance of models in other 
comparative studies.

RESULTS AND DISCUSSION

In our comparative experiments in Table 4, several 
models were deployed to assess their performance: 
UNet 3+[11], XNet[3], UNetr[5], Swin UNetr[12], 

TransBTS[12], COTr[13], nnUNetv2 (2D), nnUNetv2 
(3D Fullers)[2], MedNext (2D), and MedNext (3D 
Fullers)[14]. Among these, Mednext (3D Fullers) had 
superior performance, achieving a Dice score of 
61.41 %. 

However, our model excelled by attaining a Dice 
coefficient accuracy of 62.63 %, thereby surpassing 
the existing model MedNext (3D Fullers) which 
stood at 61.41 %. The data from the comparative 
experiments are delineated in the table below. 

In fig. 7, we present a comparative segmentation 
illustration on the PSLT dataset between MedNext and 
YNetr. The visual comparison clearly demonstrates 
the superior segmentation efficacy of YNetr over 
MedNext, as evidenced by the enhanced delineation 
of the segmented regions.
In our research, we empirically established a 
correlation between the patch size and the accuracy 
of the segmentation results. Specifically, our 
experiments demonstrate that as the patch size 
increases, there is a corresponding decrease in 
segmentation accuracy which is shown in fig. 5. 
For instance, with a patch size set to 16×16×16, 
our model achieved a Dice coefficient of 62.63 %. 
In contrast, increasing the patch size to 32×32×32 
resulted in a lower Dice coefficient of 61.08 %.
To validate the efficacy of the transformer module 
in feature extraction, we conducted a series of 
comparative experiments. We experimented with 
substituting both branches of the dual-encoder 
architecture entirely with CNN architectures. This 
configuration yielded an accuracy of 57.35 %. By 
contrast, utilizing the transformer for extracting low-
frequency features and CNNs for high-frequency 
information, we achieved an accuracy of 60.97 %. 
Conversely, employing CNNs for low-frequency and 
transformers for high-frequency feature extraction 
resulted in an accuracy of 59.04 %.

Fig. 6: Topological flow chart of segmentation process
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Model Dice coefficient

UNet 3+ 58.43

XNet 54.56

UNetr 58.67

Swin INetr 58.89

Trans BTS 55.64

COTr 56.72

nnUNetv2 (2D) 44.31

nnUNetv2 (3D fullers) 60.21

Med next (2D) 46.98

Med next (3D fullers) 61.41

YNetr (Our model) 62.63

TABLE 4: COMPARATIVE EXPERIMENT RESULTS, BOLD SIGNIFIES SOTA PERFORMANCE

Both configurations fell short of the 62.63 % accuracy 
attained when transformers were used exclusively 
in both branches. These results underscore the 
superiority of transformers in extracting both low 
and high-frequency information. The ablation study 
results are visually presented in Table 5 for an 
intuitive comparison.
In the ablation studies, we evaluated the impact of 

different loss functions on the performance of our 
proposed model as shown in Table 6. We considered 
several commonly used loss functions in medical 
image segmentation, including Dice Loss, CE Loss, 
a combination of Dice and CE Loss (Dice-CE), and 
boundary loss. The effectiveness of each loss function 
was measured based on the segmentation accuracy, 
quantified by the Dice coefficient percentage.

Fig. 7: Visualization of 2 randomly selected patients
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Notably, the Dice-CE Loss outperformed the other 
loss functions, achieving the highest accuracy of 
62.63 %. This superior performance can be attributed 
to the balanced combination of Dice and CE Loss. 
The Dice component of the loss function effectively 
handles the issue of class imbalance prevalent in 
medical image datasets, particularly in cases where 
the region of interest occupies a small portion of the 
image. 
Meanwhile, the CE component contributes to 
robust voxel-wise error penalization, ensuring that 
each pixel’s classification is accurately accounted 
for. The synergistic effect of combining these two 
loss functions leads to improved segmentation 
performance, as evidenced by our experimental 
results. This underscores the efficacy of the Dice-
CE loss in our task, providing an optimal balance 
between class imbalance handling and precise voxel-
wise classification.
While extensive research has been conducted on 
datasets for enhanced CT LITS, there is a notable 
gap in the literature regarding CT non-contrast 
datasets for this purpose. Existing field is the 
LTSC’08 segmentation challenge organized by The 
Cancer Imaging Archive (TCIA)[7], which released 
30 enhanced CT voxel datasets specifically for LITS. 
The LITS dataset from the Technical University of 
Munich (TUM), consisting of 201 voxel datasets[1], 
stands as a benchmark for LITS in enhanced CT 
imaging.

Complementing these, a variety of datasets from 
different institutions contribute to the breadth of 
research in this domain. For example, the TCGA-LIHC 
dataset from TCIA provides a substantial volume 
of data with 1688 instances[6], although it does not 
include segmentation labels. The DKFZ institution’s 

SILVER07 dataset presents an additional 30 CT 
volumes[7]. Siemens and the University of Geneva, 
with their respective datasets, contribute further to 
the field, though their focus is not exclusively on 
LITS. 60 scans with two modalities (MRI and CT) for 
segmentation and landmark detection in anatomical 
structure were provided by the VISCERAL taset 
includes CHAOS with provides 40 CT volumes 
and 120 MRI volumes[9]. The comparison of these 
datasets with the PSLT dataset is shown in Table 1.

Since the introduction of the UNet architecture[15], 
a multitude of semantic segmentation methods 
based on UNet have been developed, particularly 
for 3D voxel data. VNet[16], which utilizes 3D 
CNNs for feature extraction, marked a significant 
advancement, heralding a new phase in semantic 
segmentation methods for 3D voxel data. The 
advent of the vision transformer led to its adoption 
in various methodologies[4], such as TransU-Net[17], 
nn-former[18], CoTr[14], TransBTS[13], Transfuse[19], 
and UNETR each achieving commendable results[5]. 
Following the swin transformer’s emergence, 
sliding-window techniques have been implemented 
in the medical image segmentation field, with 
swin UNETR showing impressive efficacy across 
multiple datasets[20]. Later, to make the model more 
lightweight, Slim UNETR has been proposed[12]. 
The introduction of nnUNet[2] and mednext[14] 
provided a significant boon for those less proficient 
in AI. These systems, through high-level integration 
and data augmentation, have demonstrated strong 
performance in numerous tasks. In 2023, XNet was 
proposed, a novel approach that extracts features 
from datasets at varying frequencies and employs 
two branches each for the encoder and decoder. 
This methodology has achieved SOTA results in a 

Modules Dice coefficient (%)
Two encoders with CNN 57.35
LF (CNN) and HF (16 patches transformer) 59.04
LF (16 patches transformer) and HF (CNN) 60.97
Two encoders with 32 patches transformer 61.08
Two encoders with 16 patches transformer 62.63

TABLE 5: ABLATION EXPERIMENTS

Loss function Dice coefficient (%)
Dice loss 62.54
CE 62.36
Boundary loss 62.24
Dice-CE loss 62.63

TABLE 6: SEGMENTATION ACCURACY OF DIFFERENT LOSS FUNCTIONS
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wide range of semi-supervised and fully supervised 
semantic segmentation tasks.

Incorporating the wavelet transform, renowned 
for its exceptional frequency and spatial analysis 
capabilities, into Deep Neural Networks (DNNs) has 
seen various explorations for semantic segmentation 
tasks, as evidenced in research works[21-26]. The 
primary approaches involve leveraging the wavelet 
transform for either pre-processing or post-
processing tasks[21,22], as well as substituting specific 
CNN layers (notably those responsible for up-
sampling and down-sampling) with wavelet-based 
operations[23-25]. Despite these advancements, the 
applicability of these methods tends to be confined 
to particular types of segmentation targets, thereby 
constraining their widespread utility.

A study introduced a symmetric CNN architecture 
augmented with wavelet transform[27], named aerial 
LaneNet, aimed at enhancing lane-marking semantic 
segmentation in aerial images. Additionally, the 
concept of wavelet constrained pooling layers, as an 
alternative to traditional pooling mechanisms for the 
segmentation of synthetic aperture radar imagery, 
was presented in CWNN[28]. Furthermore, Wave 
SNet employs wavelet transforms for the meticulous 
extraction of image nuances during the down-
sampling phase and utilizes the inverse wavelet 
transform to restore these details in the up-sampling 
process[29]. The advantages of plain CT over CECT 
are primarily evident in several key aspects, plain 
scan CT are more convenient because they do not 
require the injection of contrast media, thus avoiding 
the associated complications such as contrast 
media extravasation, allergy and nephropathy. In 
contrast, CECT requires contrast injection. Iodinated 
Contrast Media (ICM) is one of the most frequently 
administered[30], AKI is a potential complication of 
intravascular iodinated contrast exposure, which 
usually presents as a transient small decrease in renal 
function that occurs within a few days of contrast 
administration and is associated with serious adverse 
outcomes, including progressive renal dysfunction 
and death[31]. It occurs in >30 % of patients after 
intravenous ICM and causes serious complications[32]. 
Intravenous administration of a contrast agent is 
required to assess blood flow to the lesion, and this 
may cause harm.

Plain CT scanning is a time-efficient, single-step 
procedure, and rapid imaging equipment can complete 
the process in seconds, making it more acceptable to 

non-compliant patients. This minimizes the patient’s 
exposure to ionizing radiation. For example, while 
minimizing radiation exposure, Ultra-Low Dose 
(ULD) CT could facilitate the clinical implementation 
of large-scale lung cancer screening[33]. However, 
CECT tends to be lengthier than other imaging 
techniques due to multiple scanning phases, including 
non-contrast, arterial, venous, and sometimes 
delayed phases. This poses greater challenges for 
non-compliant patients, increases exposure time, and 
results in higher radiation doses, which can lead to 
greater potential harm. Cost considerations indicate 
that plain scan CT are less expensive than CECT. 
This is because plain CT only involves the fee for 
the CT procedure itself, whereas CECT involves the 
fee for the enhanced scan and the contrast agent.

Plain scan CT are more suitable for screening 
during health check-ups, as they are generally more 
acceptable to routine patients than CECT. Whole-
body CT enables the identification of a significant 
number of relevant and early findings, which increase 
significantly with age, leading to changes in lifestyle 
and early treatment[34]. YNetr model, with its Dual-
Encoder architecture for PSLT, marks a pivotal 
advancement in medical imaging, especially from 
a pharmacological perspective. By bypassing the 
need for iodine-based contrast agents, it addresses 
significant patient safety concerns, particularly 
for those with allergies or renal insufficiency. 
This innovation not only enhances patient care by 
reducing the risks associated with contrast media but 
also aligns with the principles of pharmacoeconomic 
by potentially lowering healthcare costs through the 
avoidance of adverse reactions and the associated 
care expenses. Furthermore, YNetr’s approach 
is instrumental in the push towards personalized 
medicine, allowing for safer, more accurate 
diagnostics across a broader patient demographic. 
Its development underscores the critical role of 
interdisciplinary collaboration, merging insights 
from pharmacology, radiology, and computational 
science to improve diagnostic methodologies. As 
such, YNetr’s contribution to non-contrast imaging 
demonstrates a significant stride towards safer, more 
efficient, and patient-centric diagnostic solutions, 
reflecting the growing intersection between 
pharmacological safety and technological innovation 
in healthcare. Plain scan CT cannot accurately assess 
vascular anomalies such as aneurysms, embolisms, 
or aortic dissections without contrast media. Lesions 
may not be discernibly contrasted against surrounding 
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normal tissue, which hinders the ability to display 
the lesion’s structure and internal composition. This 
limitation can lead to imprecise assessments of 
lesion size, location, and type, increasing the risk 
of missed diagnoses or misdiagnoses. Low contrast 
resolution can make it challenging to differentiate 
between various structures, such as necrotic or cystic 
changes, and to detect small pathologies like lesions. 
In addition, plain scan CT do not allow observation 
of vascular features, contrast uptake patterns and 
relationships with surrounding structures, which are 
necessary to characterize some lesions and therefore 
CECT is often required for accurate diagnosis. This 
leads to less comprehensive information, which 
hinders the conclusive diagnosis and differentiation 
of benign or malignant lesions. This is not only 
a diagnostic challenge for the physician, but also 
a challenge for the artificial intelligence in the 
segmentation of the lesions in the plain scans. 
Besides, large-scale clinical and imaging modalities, 
particularly radiological features of CECT, can 
be integrated to predict the clinical prognosis of 
patients with Microvascular Invasion (MVI) and 
Hepatocellular Carcinoma (HCC)[35]. For this reason, 
we recommend that further research be conducted 
into the cost-effective segmentation of liver tumors 
on plain scans. 

In conclusion, while identifying liver tumors in 
plain scans may be more challenging than in CECT 
imaging, the benefits of lower duration, cost, and 
reduced harm position the segmentation of liver 
tumors in plain scans as a promising research area. 
Preoperative CT features can be used to characterize 
the macro trabecular-massive subtype and the 
vessels that encapsulate tumor clusters pattern. 
These features have prognostic significance for 
early recurrence in patients with HCC[36]. In the 
segmentation of liver tumors, there is a significant 
density difference between plain and enhanced CT 
scans. Compared to enhanced CT, plain CT scans 
are more challenging to discern. To overcome 
this difficulty, using wavelet transform to capture 
varying density information is a good approach. 
However, determining the most suitable density 
information and methods for information fusion still 
requires further research. From a pharmacological 
perspective, this approach also mitigates the risks 
associated with the use of contrast agents, which can 
be particularly relevant for patients with allergies or 
renal insufficiency, emphasizing the importance of 
developing safer imaging alternatives. Additionally, 

since our PSLT dataset contains only 40 volumes of 
liver tumor annotations, expanding the dataset and 
annotating other abdominal regions also necessitates 
further study. This expansion is crucial not only for 
enhancing the dataset’s comprehensiveness but also 
for exploring the potential of non-contrast imaging 
techniques in a wider range of pharmacological and 
medical applications.
In conclusion, this paper presents the YNetr model, 
which employs a dual-transformer architecture as the 
encoder, tested on the first non-contrast LITS dataset 
PSLT, achieving SOTA results. In summary, our work 
not only introduces the inaugural non-contrast LITS 
dataset for medical research, providing a benchmark 
accuracy for subsequent studies but also adopts a 
dual-encoder approach to fuse information across 
different frequencies, offering researchers novel 
insights into feature extraction methodologies. This 
contribution is particularly significant in the context 
of pharmacology, where the need for non-invasive, 
safe, and effective diagnostic methods is ever-
present. By addressing the challenges of plain CT 
imaging and emphasizing the reduction of contrast 
agent use, the YNetr model stands as a promising step 
toward safer and more accurate diagnostic practices 
in medical and pharmacological research.
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