Abstract
Azadirachta indica A. Juss Based Emollient Cream for Potential Dermatological Applications
School of Biosciences and Technology, VIT University, Vellore- 632 014, 1Material Science Division, National Aerospace Laboratories, Bangalore-560 017, India
Correspondence Address:
School of Biosciences and Technology, VIT University, Vellore- 632 014, India E-mail: padmadk4@gmail.com
Azadirachta indica A. Juss (Neem) is attested to be an important medicinal tree whose parts and extracts are known to cure several ailments since the Vedic era. But knowledge regarding their concoctions and dosages has remained largely esoteric. Dilute neem oil emulsions are used to deliver active ingredients to body parts by the topical route of administration. This possibly attenuates its dose dumping and concentration related noxious effects to a large extent. However, almost all such products incorporate synthetic organic and bio hazardous chemicals for purposes of formulation and stability, posing ultimate risks to the user. Hence in the present study, an emollient cream using 10% neem oil and an arachidyl glucoside emulsifier of completely biological origin has been formulated. Octa and hexadecanoic acid derivatives were the major fatty acid components identified in the oil. The creamy white product showed a mean particle size of 137 nm and a Z average of 19 nm, with a polydispersity index of 0.245. Zeta potential and electrophoretic mobility were measured as -47.2 and -0.000328 cm2/Vs, respectively thus conferring good stability. FTIR analysis revealed the incidence of extensive hydrogen bonding in its structure and SEM image captured its undulating surface topography. The emollient cream was not susceptible to cracking, creaming or phase separation even after a period of 180 days, when stored at 37° or under low speed centrifugation. Similar results were observed when it was stored at 40°, 4° and -18° for three days and brought to 37° for three cycles. It is concluded that this novel potentially non-toxic neem oil emollient cream can either be used per se or as a base matrix for loading active ingredients and hence function as an efficient delivery system for the same.