Abstract
Computational Evaluation on the Binding Affinity of Some Oxadiazole, Triazole and Quinazolinone Derivatives on Severe Acute Respiratory Syndrome Coronavirus 2 Envelope Protein
Department of Chemistry, Government Engineering College, Affiliated to APJ Abdul Kalam Technological University, Thiruvananthapuram, Kerala 680009, India
Correspondence Address:
V. Raphael, Department of Chemistry, Government Engineering College, Affiliated to APJ Abdul Kalam Technological University, Thiruvananthapuram, Kerala 680009, India, E-mail: vinodpraphael@gectcr.ac.in
Coronavirus disease-19 disease originated in China by the end of 2019 and has spread all over the world, with many casualties reported since then. Research for the discovery of effective pharmaceuticals is going on around the world. Pharmaceutical scientists are keenly interested in revealing the capacities of a large number of already existing molecules in molecular and drug databases to fight against coronavirus. We identified several triazole and quinazolinone derivatives from molecular databases that share key pharmacophore features with oxadiazole, a known drug-like compound, and conducted computational analysis to evaluate their ability to bind with the envelope protein of Severe Acute Respiratory Syndrome Coronavirus 2. The molecules were screened for their absorption, distribution, metabolism, excretion properties and drug-likeness using the SwissADME webserver. Out of a large number of molecules investigated, six were reported in this work that showed appreciable binding energy values. In vitro, in vivo toxicological studies and clinical trials have to be conducted to get the complete picture of their efficiency and toxicity.
Full-Text | PDF