Abstract
Central Composite Design-based Optimization and Biological Characterization of Serralysin from a Novel Source by Solid State Fermentation
Pharmaceutical Biotechnology Division, Andhra University College of Pharmaceutical sciences, Andhra University, Visakhapatnam-530003, Andhra Pradesh, India
Correspondence Address:
Swathi Nageswara, Pharmaceutical Biotechnology Division, Andhra University College of Pharmaceutical sciences, Andhra University, Visakhapatnam-530003, Andhra Pradesh, India, E-mail: swathinageswara@gmail.com
Serralysin is well known to exhibit anti-inflammatory and fibrinolytic properties. The current research designed a cost-effective serralysin production medium from Streptomyces hydrogenans var. MGS13 with the aid of solid state fermentation. Four pre-screened factors, namely horse gram flour concentration, inoculum size, initial moisture content and soya bean meal were modeled by central composite design for optimizing in order to predict their influence on serralysin production. Analysis of variance results showed a high coefficient of determination (R2) value of 0.9611, ensuring a satisfactory adjustment of the quadratic model with the experimental data and F value 26.45 (p value of ?0.0001) indicated that the model was significant. The design of experiment assisted production process enhanced 1.3 fold productivity at the best possible conditions consisting 5.0 g of horse gram flour, 1.2 ml of inoculum (1×106 CFU/ml), 44 % of initial moisture content and soya bean meal 1.0 % w/w. Besides this study, the in vitro fibrinolytic and antiinflammatory activities were carried with purified serralysin of Streptomyces hydrogenans var. MGS13. The results revealed that the purified enzyme exhibited fibrinolytic and anti-inflammatory activity in a dose dependent manner. Further one-way analysis of variance and Dunnett’s multiple comparisons statistically justify the data p<0.05 in both activities.